首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon cycling in the Weddell Sea was investigated during the ANT X/7 cruise with `FS Polarstern' December 1992–January 1993. Samples were taken on a cross section from Kapp Norvegia to Joinville Island, and on a section from the Larsen Ice Shelf to the northeast. The following quantities were measured: total carbon dioxide (TCO2), fluorescence from humic substances and total organic carbon. The distribution of TCO2 was strongly positively correlated to the time elapsed since the various water masses were last ventilated. In general, humic substance fluorescence was positively correlated with TCO2, with the exception of the productive part of the western Weddell Sea, where the correlation was negative in the surface mixed layer. The increased fluorescence at the surface is suggested to be a result of biological production. The distribution of total organic carbon showed less structure, since this quantity includes a particulate component, which is subject to dispersion processes different from those of the dissolved components TCO2 and humic substances. The mean total organic carbon concentration below the surface mixed layer was 50 μmol l−1. At some stations, a steep TOC maximum around 2000 m depth was observed. This was interpreted to result from mass sinking of phytoplankton blooms. Total organic carbon had a maximum in surface water, and at some stations also a second subsurface maximum. In the Warm Deep Water (WDW), TCO2 and fluorescence had their maximum values, while total organic carbon tended to be low. In low productivity surface water in the eastern part of the Kapp Norvegia–Joinville Island section, the lowest flourescence was found. Surface water is eventually formed from Warm Deep Water, which had the highest fluorescence values, and therefore it is concluded that humic substances were removed in situ from surface water. In the central area of the Weddell Sea, TCO2 and fluorescence showed the highest Warm Deep Water maxima, while total organic carbon was low. The Warm Deep Water in this area is part of the so-called Central Intermediate Water which circulates for a long time within the Weddell Gyre. Reduced total organic carbon, which coincides with the most pronounced Central Intermediate Water characteristics, and high TCO2 can thus both be accounted for by continued degradation of organic matter in this water mass. The associated fluorescence maximum implies that humic substances are also produced during mineralisation. Recently formed bottom water, by contrast, could be seen as patches of low TCO2, low fluorescence and high total organic carbon along the western slope of the Weddell Sea.  相似文献   

2.
Sandy sediments in shallow coastal waters of the Baltic Sea are often characterised by large numbers of biogenic structures which are produced by macrozoobenthos species. A series of experiments was devised to quantify how the interaction of such structures with the near-bed flow regime affects the sediment flux. Most experiments were done with simplified replicates of structures generated by typical species commonly found in the Mecklenburg Bight, starting with solitary structures and regularly-spaced arrays in a range of characteristic population densities, followed by a complex benthic macrofauna community, both artificial and alive. A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a topography scanning laser, was used for high-resolution measurements (2 mm horizontal step size and 0.3 mm vertical resolution) of sand erosion (220 µm median grain size, at 20 cm s− 1) and fine particle deposition (8 µm grain size, at 5 cm s− 1). Sediment transport threshold values were measured for each layout. As a rule-of-thumb, both the erosion fluxes and the deposition of suspended matter increased considerably at low population densities (below 2%, expressed as percent of the sediment surface covered, i.e. roughness density RD). Above densities of 4%, erosion almost stopped inside the test arrays, and deposition remained well below the level of unpopulated areas. An attempt to extrapolate these findings to field conditions (using field current velocity data from 2001) showed that the net flux switched from erosion to deposition for densities above 5%. These parameters can now be integrated into a numerical sediment transport model coupling waves, currents, sediment dynamics and biological processes, which is currently under construction at the Baltic Sea Research Institute (IOW), Rostock, Germany.  相似文献   

3.
Data from two cruises, one in April/May 1996 and one in December/January 1993, covering the same wide area in the offshore Weddell Sea, were used to derive the annual extent of entrainment and the capacity of the biological pump. The former property was obtained with the help of dissolved oxygen data, whereas the latter was approximated with nutrients. Especially the data from April/May, representing the initial state of the winter surface layer, were crucial to assess the annual extent of these processes. The results were applied to our carbon dioxide data. The annual increase of the Total CO2 (TCO2) concentration in the surface layer due to vertical transport amounts to 16.3 μmol kg−1. An entrainment rate of deep water in the surface layer amounting to 35±10 m yr−1 was deduced. The compensating, biologically mediated TCO2 reduction was calculated to be larger than the TCO2 increase due to vertical transport. Since the balance of these two processes determines whether the Weddell Sea is a source or a sink of CO2, this indicates that the Weddell Sea, albeit upwelling area, is definitely a sink for atmospheric CO2 on an annual basis. This conclusion is further supported by contemplations that the biological drawdown of CO2 in the Weddell Sea as a whole is probably underestimated by our calculations. The new production for the Weddell Sea on a per unit area basis was found to be much higher than that for the Antarctic Ocean, when the latter value is being obtained by traditional biological methods. On the other hand, the CO2 uptake by the Weddell Sea on a per unit area basis is somewhat smaller than the CO2 uptake by the world ocean.  相似文献   

4.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

5.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

6.
Ninety-two box cores collected during 2004–2006 from an area of ~ 3000 km2 off the Gaoping (formerly spelled Kaoping) River, SW Taiwan, were analyzed for fallout radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation rates and processes, and for the calculation of a sediment budget. The study area is located at an active collision margin with a narrow shelf and a submarine canyon extending essentially into the river's mouth. The results indicate fairly constant hemipelagic sedimentation in much of the open margin and for most of the time except in the inner shelf and along the axis of the canyon where sediment transport is more dynamic and is controlled by tidal current and wave activities constantly, and by fluvial floods or gravity-driven flows episodically. Sedimentation rates in the study area derived from 210Pb and constrained by 137Cs vary from 0.04 to 1.5 cm/yr, with the highest rates (> 1 cm/yr) flanking the Gaoping canyon over the upper slope (200–600 m) and the lowest rates (< 0.1 cm/yr) in the distal basin beyond the continental slope. The depocenter delineated from 210Pb-based sedimentation rates overlaps with the area covered by a flood layer resulting from super-typhoon Haitang in July 2005. Such correspondence supports the notion that the processes operating on event timescale have bearing on the formation of the sediment strata over centennial or longer timescales.From the distribution of sedimentation rates, sediment deposited in the study area annually is estimated to be 6.6 Mton/yr, accounting for less than 20% of Gaoping River's sediment load. The calculated budget, coupled with the presence of the short-lived 7Be and non-steady-state distribution of low levels of 210Pb in sediments along the canyon floor, suggests rapid transport of sediment from Gaoping River's mountainous watershed (the source) via the Gaoping (Kaoping) Submarine Canyon and adjacent channels (as the conduit and temporary sink) to the abyssal plain and the Manila Trench in the South China Sea (the ultimate sink).  相似文献   

7.
Sediment physical properties of the DYNAS study area   总被引:2,自引:0,他引:2  
Physical properties of the deposits in the DYNAS study area, the Mecklenburg Bay, were investigated using sediment echosounders and laboratory analysis were carried out on undisturbed short sediment cores. Wet bulk densities of about 1.2 g/cm3 for mud and up to 1.9 g/cm3 for silty sand were found in surface sediments of the Mecklenburg Bay. Sediment density–depth functions were approximated by logarithmic regression functions at different depth intervals. Sediment consolidation was studied by both (i) consolidation tests of sediment samples and (ii) from the void ratio–overburden pressure relation in natural sediments. Low shear strength values of 9–71 Pa were measured at the mud surface. Downcore, a depth gradient of about 14.5 Pa/cm was calculated. Sediments with high silt and sand contents are characterized by shear strength values of up to 3000 Pa. Published formulas derived from erosion studies were used to calculate the critical shear stress using wet bulk density and shear strength. The obtained results demonstrate clearly, that there is still a wide gap in knowledge about the relationships between erosion parameters and sediment physical properties.  相似文献   

8.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

9.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

10.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

11.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

12.
In this paper the results of a study on the distribution of pore water phosphates and ammonia, and their fluxes under anoxic condition in a deep (> 70 m) accumulation-type bottom of the south-eastern Baltic Sea, namely in the Gdańsk Deep and the adjacent areas, are presented. All measurements were taken during the growth period, i.e. in September 2000, April 2001 and June 2002. Benthic phosphate and ammonia fluxes were estimated using Fick's First Law. Phosphate and ammonia concentrations ranged from 7.5 to 266.3 μmol dm− 3 and from 53.6 to 1248.3 μmol dm− 3, respectively. The values recorded in the central part of the Gdańsk Deep were lower than those found both on its slopes and on the SW slope of the Gotland Deep. The lowest phosphate contents were typical of the Oblique Sill which separates the Gdańsk and Gotland Deeps.In 1993–2002, as a result of anoxia the sediments in the Gdańsk Deep released about 5.1 × 103 t P and 22.8 × 103 t N. These loads supplied on average 1.5% and 0.9% of phytoplankton's demand for P and N, respectively. In comparison to the total external load of nutrients discharged to the Gulf of Gdańsk (i.e. 8.79 × 103 t year− 1 Ptot and 130.79 × 103 t year− 1 Ntot; [Witek, Z., Humborg, Ch., Savchuk, O., Grelowski, A. and Łysiak-Pastuszak, E., 2003. Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Est. Coast. Shelf Sci., 57:239–248.]), the return flux of P and N from the anoxic sediments to the water column in the Gdańsk Deep was a minor source of these elements.  相似文献   

13.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

14.
The sediment dispersal system in southwestern Taiwan margin consists of two main parts: the subaerial drainage basin and the offshore receiving marine basin. In plan view, this sediment dispersal system can be further divided into five geomorphic units: (1) the Gaoping (formerly spelled Kaoping) River drainage basin, (2) the Gaoping (Kaoping) Shelf, (3) the Gaoping (Kaoping) Slope, (4) the Gaoping (Kaoping) Submarine Canyon and (5) the Manila Trench in the northernmost South China Sea. The Gaoping River drainage basin is a small (3250 km2), tectonically active and overfilled foreland basin, receiving sediments derived from the uprising Central Range of Taiwan with a maximum elevation of 3952 m. The Gaoping Submarine Canyon begins at the mouth of the Gaoping River, crosses the narrow Gaoping Shelf (~ 10 km) and the Gaoping Slope, and finally merges into the northern termination of the Manila Trench over a distance of ~ 260 km. The SW Taiwan margin dispersal system is characterized by a direct river-canyon connection with a narrow shelf and frequent episodic sediment discharge events in the canyon head.In a regional source to sink scheme, the Gaoping River drainage basin is the primary source area, the Gaoping Shelf being the sediment bypass zone and the Gaoping Slope being the temporary sink and the Manila Trench being the ultimate sink of the sediment from the Taiwan orogen. It is inferred from seismic data that the outer shelf and upper slope region can be considered as a line source for mass wasting deposits delivered to the lower Gaoping Slope where small depressions between diapiric ridges are partially filled with sediment or are empty.At present, recurrent hyperpycnal flows during the flood seasons are temporarily depositing sediments mainly derived from the Gaoping River in the head of the Gaoping Submarine Canyon. On the decadal and century timescales, sediments temporarily stored in the upper reach are removed over longer timescales probably by downslope-eroding sediment flows within the canyon. Presently, the Gaoping Submarine Canyon serves as the major conduit for transporting terrestrial sediment from the Taiwan orogen to the marine sink of the Manila Trench. Seismic data indicate that the Gaoping Submarine Canyon has been eroding the Gaoping Slope intensely by presumed hyperpycnal flows and transporting sediments from the canyon head to the middle and lower reaches of the canyon. The middle reach is a sediment bypass zone whereas the lower reach serves as either a temporary sediment sink or a sediment conduit, depending on relative prevalence to deposition or erosion during canyon evolution. Contrast differences in channel gradient and travel length between the Gaoping and Amazon sediment dispersal systems suggest that the Gaoping (Kaoping) River-Canyon system is an active sediment dispersal system for transporting terrestrial materials to the deep sea. The fate of the Gaoping River sediment is the northern Manila Trench.  相似文献   

15.
Physical disturbance by disposal of dredged materials in estuarine and coastal waters may result in burial of benthic fauna. Survival rates depend on a variety of factors including the type and amount of disposed materials and the lifestyle of the organisms. Laboratory burial experiments using six common macrobenthic invertebrates from a brackish habitat of the western Baltic Sea were performed to test the organisms' escape reaction to dredged material disposal. Experimental lab-results were then extrapolated to a field situation with corresponding bottom topography and covering layer thicknesses at experimental field disposal study sites. Resulted survival rates were then verified by comparison with results of an earlier field study at the same disposal sites.Our experimental design in the lab included the disposal of two types of dredged material (i.e. ‘till’ and ‘sand/till mixture’) and two covering layer depths (i.e. 10–20 cm and 14–40 cm). All three bivalves Arctica islandica (Linnaeus), Macoma balthica (Linnaeus), Mya arenaria (Linnaeus) and the polychaete Nephtys hombergii (Savigny) successfully burrowed to the surface of a 32–41 cm deposited sediment layer of till or sand/till mixture and restored contact with the overlying water. These high escape potentials could partly be explained by the heterogeneous texture of the till and sand/till mixture with ‘voids’. The polychaete Bylgides (Harmothoe) sarsi (Malmgren) successfully burrowed through a 16 cm covering layer whereas the polychaete Lagis koreni (Malmgren) showed almost no escaping reaction. No general differences in escape behaviour after burial were detected between our test species from the brackish habitat and those reported in the literature for the same species in marine environments. However, a size-dependence in mobility of motile polychaetes and M. arenaria was apparent within our study. In comparison to a thick coverage, thin covering layers (i.e. 15–16 cm and 20 cm) increased the chance of the organisms (N. hombergii and M. arenaria) to reach the sediment surface after burial. This was not observed for the other test species. While crawling upward to the new sediment surfaces burrowing velocities of up to 8 cm d− 1 were observed for the bivalves and up to 20 cm d− 1 for N. hombergii. Between 17 and 79% of the test organisms showed burrowing activity after experimental burial. The survival rate (defined as the ability to regained contact with the sediment surface) ranged from 0 to 33%, depending on species and on burial depth. The organisms reached the sediment surface by burrowing (polychaetes and bivalves) and/or by extending their siphons to the new sediment surface (bivalves). The extrapolation of laboratory survival rates to the two disposal sites was obtained based on the in situ thicknesses of the dredged spoil layers measured by multi-beam echo sounder. This resulted in total average survival rate estimates for the test species of 45 and 43% for the two disposal sites. The results obtained during the laboratory tests and the following extrapolation to the field were verified by the range of results from a previous field study, using grab sampling shortly before and after a disposal event in June 2001. The effect of dredged material disposal on the tested Baltic Sea benthic macrofauna was assessed by extrapolating the verified laboratory results to the field.  相似文献   

16.
The biogeochemistry of the sulfur cycle in a ca. 5-m-long sediment core from the eastern slope (221 m water depth) of the Landsort Deep in the west-central Baltic Sea was investigated by analyzing the solid phase records of sulfur isotopes and pyrite textures, besides selected main and minor elements. The sediments were deposited during post-glacial history of the Baltic Sea when the basin experienced alteration of brackish (Yoldia Sea, Littorina Sea) and freshwater (Baltic Ice Lake, Ancylus Lake) conditions. The stable isotopic composition of total sulfur was analyzed as a function of depth. In selected samples pyrite (FeS2), greigite (Fe3S4), and barite (BaSO4) fractions were separated for isotope analyses. Pyrite textures were analyzed by SEM and optical microscopy.Microbial reactions associated with the oxidation of organic matter resulted in assemblages of authigenic sulfide minerals which for the post-Ancylus Lake brackish water environment are dominated by pyrite and for freshwater environments by Fe-monosulfides. The sulfur isotopic composition of the brackish water Littorina Sea sediments (δ34S between −40 and −27‰ vs. V-CDT) is believed to be determined by cellular sulfate reduction rates and reactions involving intermediate sulfur species. The availability of reactive iron and decomposable organic matter as well as sedimentation rate and the chemocline position are important variables upon the δ34S values of sulfides in brackish water environment. The syn-depositional abundance of sulfur and organic matter, and transport of dissolved sulfur species vs. rates of microbial reactions determine δ34S in the freshwater sediments. The upper part of the Ancylus Lake sediments is sulfidized by downward diffusing H2S and/or sulfate from overlying brackish water sediments. Minor concretionary barite formation in the freshwater sediments is most likely due to the reaction of pore water sulfate diffusing downward from brackish water sediments with barium desorbed from freshwater sediments. The size distribution of pyrite framboids in the brackish sediments indicates that the formation mainly occurred from anoxic pore waters, although some pyrite formation in an anoxic water column cannot be excluded.  相似文献   

17.
The hydrophysical and hydrochemical structure of the Sea of Azov, with developed bottom anoxia, was studied during the RV “Akvanavt” cruise from July 31 to August 03, 2001. The anoxic zone with a thickness from 0.5 to 4 m above the bottom was found in all deep regions of the Sea. Concentrations of hydrochemical parameters were similar to the pronounced anoxic conditions (about 90 mmol m− 3 of hydrogen sulfide, 17 mmol m− 3 of ammonia, 6 mmol m− 3 of phosphate, 7 mmol m− 3 of total manganese). The hydrophysical structure was characterized by the uniform distribution of temperature in the upper 6–7 m mixed layer (UML). Below this a thin (0.4–0.8 m) thermocline layer was observed, just above the anoxic waters. Formation of this phenomenon was connected with that summer weather conditions. Intensive rains led to increased influx of river waters in June. That resulted in large input of allochtonous organic matter (OM) and inorganic nutrients; the latter were consumed on the additional autochthonous organic matter production. In July the weather was characterized by a significant rise in the daily averaged air temperature and large oscillations of temperature during the day. In this period a wind of constant direction was absent, but wind bursts were observed. The completed analyses showed that the formation of such a structure could be connected with the following factors: (i) positive growth trends of the daily averaged temperature and the daily oscillations of temperature, (ii) presence of wind bursts. The joint action of these factors resulted in the formation of the UML. The amplitude of wind bursts determined the depth of UML, and the value of trend determined the value of the temperature change in the thermocline. An initial presence of bottom halocline (caused by the Black Sea water influx to the bottom of the Sea of Azov) prevented the heating of the bottom layer and therefore led to an increase of vertical gradient of temperature in the thermocline. The spatial distribution of the turbulent exchange coefficient confirmed the existence of a “stagnation” area located above the anoxia zone, which is also, apparently, the reason for its occurrence.  相似文献   

18.
Surface and box-cored sediments were collected along the Gaoping (formerly spelled Kaoping) Estuary–Canyon system and analyzed for As and Hg contents and speciation, 210Pb-based sedimentation rates and various geochemical parameters to elucidate the mechanisms that control natural and anthropogenic inputs of As and Hg from the Gaoping (Kaoping) River (KPR). The contents of As and Hg in surface sediments ranged from 1.84 to 20.7 mg kg− 1 and from 0.07 to 2.15 mg kg− 1, respectively, in the estuary and canyon. The concentrations generally decreased from the lower river toward the mixing boundary and then increased toward the estuarine mouth, followed by a slight variation in the canyon. Both As and Hg concentrations correlated strongly with clay, total organic carbon (TOC), Al, Fe and Mn contents in estuarine sediments but not necessary the same cases for canyon surface sediments. The factor analysis of surface sediments shows that the first two factors, which account for 75.6% of the variance, may represent major roles of carriers (clay, Al and Fe–Mn oxides) and TOC in controlling As and Hg distributions, respectively. Accordingly, the spatial patterns of the enrichments of As (1.9–16.2) and Hg (1.8–30.8) with reference to the crust levels follow the individual element's distribution patterns, likely because of deposition variability following inputs from the river. The contents of mobile As and Hg correlated substantially with the contents of both metals that were extracted with 0.1 M HCl. In addition to the major pool in the residual fraction (65–87%), As was relatively abundant in Fe–Mn oxides/hydroxides, whereas Hg was abundant in the organic/sulfide fraction. The deposition and accumulation rates of As and Hg in the canyon clearly decreased as the depth of water increased. The depth distributions of both metals are likely controlled primarily by TOC and Fe–Mn oxides associated factors followed by a contribution from anthropogenic pollution. The metal pollution appears to have increased substantially around 1970, following the economic boom in Taiwan, suggesting that modern sediments in the Gaoping (Kaoping) Canyon were derived from the Gaoping (Kaoping) River (KPR).  相似文献   

19.
Due to its great meridional extent and relatively shallow depths, the Kerguelen Plateau constitutes a major barrier to the eastward flowing Antarctic Circumpolar Current in the Indian sector of the Southern Ocean. While most of the Antarctic Circumpolar Current transport is deflected north of the Kerguelen Islands, the remainder ( 50 Sv, 1 Sv = 106 m3 s− 1) must pass south of the islands, most probably through the Fawn and Princess Elizabeth Troughs. However, the paucity of finely resolved quasi-synoptic hydrographic data in this remote and infrequently sampled area has limited the progress in our knowledge of the regional circulation. Since 2004, a new approach using elephant seals from the Kerguelen Islands as autonomous oceanographic profilers has provided new information on the hydrography over the Kerguelen Plateau, covering the entire Antarctic Zone between the Polar Front and Antarctica, with a mean along-track resolution of about 25 km. These finely resolved bio-logged data revealed details of a strong northeastward current found across the Fawn Trough (sill depth: 2600 m; 56°S, 78°E). This so-called Fawn Trough Current transports cold Antarctic waters found mostly south of the Elan Bank, between the Ice Limit (58°S) and the Antarctic Divergence (64°S) in the eastern Enderby Basin, toward the Australian–Antarctic Basin. Our analysis also demonstrates that the Deep Western Boundary Current, which carries cold Antarctic water along the eastern flank of the southern Kerguelen Plateau collides with Fawn Trough Current at the outlet of the Fawn Trough sill. In other words, the Fawn Trough constitutes a veritable bottleneck, channelling the quasi-totality of the Antarctic Circumpolar flow found south of the Polar Front. Thanks to the unprecedented fine resolution of seal-borne data, a branch of flow centered at the Winter Water isotherm of 1 °C is also revealed along the northern escarpment of the Elan Bank, and then along the southern edge of Heard Island. Further analysis of different supplementary data reveals a complex circulation pattern in the entire Enderby Basin, with several distinctive branches of flow being strongly controlled by prominent topographic features such as the Southwest Indian Ridge, Conrad Rise, Elan Bank, and Kerguelen Plateau. This newly emerged frontal structure refines considerably previous large-scale circulation schematics of the area.  相似文献   

20.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号