共查询到17条相似文献,搜索用时 62 毫秒
1.
行程时间预测是智能运输系统研究的一个重要问题,为此,建立了许多算法,有历史趋势方法,非参数回归模型、时间序列方法、神经网络、卡尔曼滤波、交通模型和动态交通分配模型等。然而,在变化的交通状况和任意时段的条件下,这些方法和模型都不能取得令人满意的预测结果。文中首先吉这些已有的预测方法和模拟,然后提出一种综合模型。 相似文献
2.
实时动态路段行程时间预测的一种实用方法 总被引:8,自引:2,他引:8
针对智能运输系统(ITS)亟待解决的理论热点问题,利用随机服务系统理论给出进入路段(含信号交叉口)车辆数服从Poisson分布的实时动态行程时间预测的基本公式,为提高预测的精度,又结合多元统计回归方法添加修正项,进而提出一般性公式,并给出预测结果。 相似文献
3.
在介绍了支持向量机基本原理和实现算法的基础上,将它应用于软土路基填筑施工中的沉降预测,提出了一种有效的预测方法,并构造了预测路基沉降的支持向量机模型。经过与传统BP神经网络方法预报结果比较,表明该方法在较少训练样本的情况下具有精度高、泛化能力强的特点。取得了较BP神经网络建模方法更好的预报效果。为预测填筑施工引起的软土路基沉降提供了一种新的方法。 相似文献
4.
基于主成分分析与支持向量机结合的交通流预测 总被引:1,自引:1,他引:1
为提高交通流预测的预测精度和预测速度,提出了用非线性回归支持向量机与主成分分析相结合进行交通流预测的方法。主成分分析用来对交通流预测的预测变量进行特征抽取,用较少的主成分代替原预测变量.将生成的主成分输入到非线性回归支持向量机,进行交通流预测,支持向量机的核参数利用Bayesian推理进行确定。通过对济南市交通数据的实例分析来验证该方法的有效性。结果表明,非线性回归支持向量机与主成分分析相结合进行交通流预测不但可以提高交通流预测的精度,同时还可以降低预测所需的计算量,满足交通流预测的实时性要求,预测精度比目前常用交通流预测方法的预测精度有所提高。 相似文献
5.
6.
基于改进支持向量机的交通流量预测算法研究 总被引:1,自引:0,他引:1
城市交通流具有复杂性、时变性和随机性,如何实时准确的预测交通流量是实现智能交通诱导及控制的前提.结合交通流的时间序列特性,提出基于改进支持向量机的交通流预测算法,该算法能够克服神经网络预测的不足,对支持向量机算法在嵌入维数、核函数和参数选择上进行了改进.实验仿真结果表明,该算法具有很好的预测精度和适用性. 相似文献
7.
基于粗糙集交通信息提取计算的城市道路行程时间预测 总被引:1,自引:0,他引:1
针对城市道路的行程时间预测问题进行研究。由于城市道路交通问题具有不确定性和不精确性,故采用基于粗糙集的交通信息提取计算理论建立城市道路行程时间预测模型。模型建立后,利用在荷兰代尔夫特市采集到的实际数据,对该预测模型进行检验。检验结果表明:如果不进行原始数据的前期处理,那么得到的预测误差在35%左右;而在剔除了质量较差的数据后,预测精度明显提高;同时,条件属性和决策属性的分类,显著影响到预测的精度。通过计算得到分类范围值,该模型能够较好的对交通状态进行物理解释同时预测精度能够达到可以接受的范围。 相似文献
8.
支持向量机是近年来在统计学习理论基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.将支持向量机用于基坑变形预测,根据基坑位移的实测时间序列资料,建立基坑位移与时间的关系模型.将实际基坑工程监测资料作为学习训练样本和测试样本,将模型计算结果与实际监测值进行对比分析、研究.... 相似文献
9.
支持向量机在交通流量实时预测中的应用 总被引:5,自引:3,他引:5
实时、准确的交通流量预测是正在发展的智能交通系统的关键问题之一,对于交通控制和交通流诱导都有着直接的影响。提出一种基于支持向量机的交通流量实时预测模型,通过采用序贯最小优化算法,能够实现对交通流量的有效预测。应用实例表明,支持向量机具有良好的泛化性能,在输入信号混有10%噪声的情况下,支持向量机的鲁棒性更好,预测的平均误差为4.25%,预测结果优于BP神经网络和动态递归神经网络。 相似文献
10.
利用探测车数据进行路段行程时间估计面临着两类误差:采样误差和非采样误差,从而导致估计结果精度不高和可靠性差。在回顾已有估计方法的基础上,有针对性地引入了自适应式卡尔曼滤波,建立了相应的状态方程和观测方程,利用相似时间特征的历史数据标定了状态转移系数,并对滤波进行了求解。以实际数据对估计方法进行了验证,平均相对误差为13.13%。研究表明,自适应式卡尔曼滤波能够应用到基于探测车数据的路段行程时间估计中来,并具有估计精度高、收敛速度快、参数少、对初值不敏感等优点。 相似文献
11.
对灰色理论、神经网络和支持向量机的预测模型进行了研究,对灰色理论、神经网络和支持向量机3种预测方法进行了线性组合、神经网络组合和支持向量机的组合预测.以1995~2004年某公路路段的交通事故次数为例,与单一预测方法结果、线性组合预测和神经网络组合预测进行对比,认为支持向量机组合预测方法比较精确. 相似文献
12.
建立了选址决策的模糊评价矩阵,应用支持向量机方法(SVM)来处理数据,进行物流配送中心的选址决策。支持向量回归机根据所提供的数据,通过学习和训练,找出输入与输出的内在联系,从而求取问题的解,而不是根据经验知识,因而具有自适应功能,能弱化指标权重确定中人为因素的影响。与传统方法相比较,有较好的泛化能力,能较客观地对多个选址方案的优劣进行评价。最后,引用实例说明利用支持向量回归机完成评价工作的全部步骤。 相似文献
13.
以元胞传输模型(LWR模型的离散形式)作为分析工具,以行程时间为研究对象,研究了单车道路段没有出入口的基本路段受交通信号控制影响下的动态行程时间.考虑到路段上车辆密度对车辆速度的影响,文章定义了路段加权密度来表征车辆进入路段时路段的状态.分析结果表明,动态行程时间和车辆进入路段时的流量基本上没有关系;当车辆进入路段时刻一定时,路段加权密度和车辆的动态行程时间成线性关系. 相似文献
14.
基于检测器数据的路段行程时间估计通常具有精度不高和可靠性差的特点。论文引入了自适应式卡尔曼滤波,采用K近邻法寻找相似的交通流状态来标定状态转移系数,建立了基于固定型检测器数据和移动型检测器数据的路段行程时间估计融合模型。实际数据的验证结果是,平均相对误差为9.52%,相对误差的标准差为8.92%。研究表明,与基于移动检测器数据的估计方法相比较,该方法极大地改善了估计精度和可靠性,还具有收敛速度快、对初值不敏感、参数少等特点。 相似文献
15.
16.
城市干道旅行时间预测是实时交通运营管理与交通诱导的核心问题之一,也是出行者的重要需求.文中分析了济南市经十路采集的真实数据,研究发现了交通需求和旅行时间在工作日和非工作日同时段具有较大差异、全天具有显著早晚高峰、以及工作日同时段具有相似性及波动性等特征.基于该类特性,分别改进了适用于周期性数据的卡尔曼滤波和波动性的人工神经网络2类预测模型.提出了组合预测算法,将基于历史同时段数据的卡尔曼滤波算法的预测值作为人工神经网络的输入变量,利用历史天和临近时刻的可用数据进行了预测.结果表明:在3.8 km的信号控制干道上,组合预测模型平均误差低于0.9 min,误差超过2 min的概率低于4%,其预测性能可满足实时的交通需求. 相似文献
17.
基于最小二乘支持向量机的车型识别算法研究 总被引:1,自引:0,他引:1
以感应线圈车辆检测器检测数据为分析基础,给出了基于Bayes理论的感应曲线自适应特征提取流程和方法,对选取的12个统计特征指标进行提取和优选。选择了曲线宽度、最大值、波峰数量、最小波谷值和波谷比组成车型识别模型的特征输入向量,不仅降低了输入向量的维数,缩短了最小二乘支持向量机的训练时间,同时也可加快车型识别的分类速度,增强特征值的分类辨别能力,提高车型分类的可靠性。在提出的基于最小二乘支持向量机的车型识别算法中,采用了修剪算法,加快了计算速度,同时保持了良好的回归性能。通过实例分析证明:基于最小二乘支持向量机的车型识别算法可提高自学习能力和识别准确率。 相似文献