首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
胡汶晗 《路基工程》2019,(2):105-109
为研究加筋泡沫轻质混凝土的力学性能及其用于路桥过渡段的动力特性,首先开展了加筋泡沫轻质混凝土抗压强度和弹性模量试验,其次运用ABAQUS建立了轨道-路基-过渡段三维数值模型,分析了加筋泡沫轻质混凝土过渡段的动力特性。结果表明:加筋泡沫轻质混凝土无侧限抗压强度和弹性模量随着纤维含量增加呈现先增加后减小趋势,密度大于700 kg/m3的加筋泡沫轻质混凝土可满足高速铁路路桥过渡段的填料性能要求;采用加筋泡沫轻质混凝土填筑过渡段时能够减少结构的振动,随着过渡段加筋泡沫轻质混凝土填料密度的提高  相似文献   

2.
综合考虑不同结构层之间的相互作用,结合无砟板式轨道动力学模型,利用有限元软件建立车辆-轨道-路基耦合系统的动力学空间数值模型,分析了时速350 km/h高速列车在运营时正梯形和倒梯形形式路桥过渡段的动力响应。结果表明:列车荷载作用下,两种路桥过渡段的动力响应基本上一致;倒梯形过渡段的沉降量稍大于正梯形过渡段,而正梯形过渡段比倒梯形过渡段更有利于保持轨道的平顺性;路桥连接处(桥台后5 m范围内)是整个路桥过渡段的薄弱环节,应该单独考虑其设计、施工过程。综合考虑机车的各项动力学指标,建议将路桥过渡段轨面弯折角  相似文献   

3.
为研究重载铁路路桥过渡段在轴重增大、速度提高情况下的变形和动力响应,本文采用有限元数值计算方法,系统总结了重载铁路路桥过渡段路基纵向动力响应规律。分析表明:轴重的变化是影响动应力峰值的决定性因素;列车上桥时,动位移在距桥台0~25m范围内比较集中,变化明显,在该范围内动位移先增大,后减小,在15m左右位置动位移达到最大值。25t轴重、速度100km/h时,桥两侧点的加速度峰值均显著增加;尤其速度提高到120km/h后,影响更甚;上桥侧过渡段路基表面动位移和加速度峰值变化受轴重等因素的影响较下桥侧明显。  相似文献   

4.
高速铁路路基过渡段包括正梯形和倒梯形两种过渡形式。为评价不同过渡段形式对车辆-轨道-路基过渡耦合系统动力特性的影响,基于车辆-轨道-路基耦合力学原理,运用MATLAB计算程序建立了列车-轨道-路基过渡段垂向耦合动力模型。计算结果表明:正梯形路基过渡段形式的刚度变化在纵向和深度方向比倒梯形过渡段形式更平缓,更有利于高速列车行驶的安全和平顺;过渡段3 m范围内系统动力响应变化较为剧烈,在过渡段尺寸及形状均匀段两种过渡段形式下系统动力响应无差异,在过渡段尺寸及形状变化范围内,系统动力响应表现出一定差异,且正梯形过渡段形式下动力响应波动较小。  相似文献   

5.
在考虑车辆动力模型及路桥过渡段不平整几何模型的基础上,采用3轴9自由度车辆运动动力模型,结合弹塑性动力有限元方法,建立可用于分析路桥过渡段车辆振动荷载作用的路基路面动力响应三维有限元模型,计算结果表明,由于路桥高差的激振,车辆将产生一定幅度的垂向和俯仰运动,路面受到的最大动力荷载作用在距离桥头10~30 m范围内;考虑到通平高速公路1-5合同段主要分布为全风化花岗岩,试验结果表明,当地全风化花岗岩填料0.075 mm通过率越小,渗透性越好,可采用强度相对高、颗粒粗的全风化花岗岩填料进行台背回填,其他标段则采用符合规范要求的碎石土填筑。  相似文献   

6.
为研究路桥过渡段差异沉降量化指标,对设搭板和不设搭板2种情况下的路桥过渡段差异沉降建立计算模型.引入动荷载系数作为行车安全性评价指标,将车辆系统简化为5自由度半车模型进行垂直振动的力学模拟,求解分析了车辆通过不同台阶高度(不设搭板情况)和不同搭板长度(设搭板情况)的路桥过渡段动荷载和动载系数的变化规律.结果表明:随着台阶高度增加,前后轮受力最大值逐渐增大,受力最小值逐渐减小;当台阶高度为5 cm时,前后轮受力的最小值已逐渐接近于0,当台阶高度为7 cm时,前后轮受力已出现负值;设置搭板后整车动荷载系数有明显减小,且随着搭板长度增加,整车动荷载系数减小.在此基础上,提出了基于安全性的路桥过渡段差异沉降控制标准.  相似文献   

7.
通过有限元分析,对影响交通荷载作用下的路桥过渡段沉降进行了研究。结果表明,随着路桥过渡段高度的增加,最大沉降值也随之增大,当桥墩台北回填过渡段原地面坡比从1∶3增加到1∶6时,沉降值有所增大,但变化幅度较小,坡比对路桥过渡段沉降影响非常小。随着路桥过渡段填料密度的增大,沉降值也呈增加趋势,同时路桥过渡段最大沉降点逐渐向桥台靠近。过渡段密度取值要适中,不要太大。沉降随变形模量的增大而不断减小,在倒梯形、正梯形过渡段末端,沉降量保持稳定趋势,最大沉降基本相同,过渡段的形式只对沉降速度有影响,对最终沉降量没有明显影响。路基沉降实测值要稍小于数值模拟值,两者具有一致的沉降趋势,数值分析方法预测路基沉降的一种有效方法,对路基沉降变化过程可很好进行反映。  相似文献   

8.
基于整车模型的桥头路面动力荷载分析   总被引:1,自引:1,他引:1  
由路桥不均匀沉降产生的桥头跳车将导致桥头路面受力显著增大和路面提前破坏。通过建立7自由度整车运动动力模型和路桥过渡段路面-桥面形状几何模型,采用Wilson-θ方法求得了车辆经过不平顺的路桥过渡段所产生振动的时程。计算结果表明,桥头跳车中汽车后轮的最大动荷载明显大于其静荷载,且其最大动荷载并不一定仅发生在桥头搭板范围内,而在下桥方向一定长度范围内。对于长度小于100 m的桥梁,桥梁长度对路面所受最大动力荷载的大小和位置均有较大影响。因此常规仅对桥头搭板进行加强的设计方案是不够的,还应根据桥梁的长度不同,对桥头一定长度范围内路面就跳车所产生的动力荷载进行深入分析。  相似文献   

9.
为研究重载列车不同运行条件下的轨道-桥梁纵向动态传递规律,以多跨32m预应力混凝土简支梁桥为对象,建立考虑多车编组牵引及制动作用的重载列车-轨道-桥梁空间耦合动力学模型,对轨道-桥梁的纵向动力响应特征、桥墩纵向受力影响因素和有效制动力率进行研究。结果表明:当机车以最大能力牵引时,作用于桥墩的有效牵引力率为0.134,紧急制动时,有效制动力率为0.155,紧急制动工况比牵引工况更不利;桥墩纵向受力随跨数的增加而增大并逐渐趋于稳定,随列车轴重的增加呈线性增大;不同列车编组模式下,列车的等效制动力率不同,最大值为0.141;桥墩纵向设计荷载限值应根据列车轴重进行选取,当轴重大于33t时,应进行动力检算。  相似文献   

10.
为探究列车在不同车速以及空载、满载情况下通过“桥建合一”型车站时所引起的结构振动问题,以某“桥建合一”高架越行车站为例,建立车-轨道-车站的有限元结构耦合动力分析模型,分析B型车在80~120 km/h速度下作用于站房结构及结构反作用于列车的动力响应结果,并进行舒适度评价。结果表明:当B型车以80~120 km/h通过该车站时,列车竖、横向振动加速度以及列车的乘坐舒适性均满足相关规范限值要求;承轨层竖向响应均大于横向响应,且竖向位移和竖向加速度随着车速的增加变化较小,横向位移和横向加速度随着车速的增加呈现先增大后减小的趋势;候车厅楼板的最大竖向响应均大于其横向响应,最大横向位移随着车速的增大呈现先增大后减小的趋势,最大横、竖向加速度均随着车速的增加呈现变大的趋势。通过理论计算结果与“桥建合一”车站现场实测数据的比对,验证了空间耦合振动有限元模拟计算的可靠性,可为同类高架车站结构的计算与分析提供参考。  相似文献   

11.
为研究路桥过渡段差异沉降控制方法及标准,以京台高速公路改扩建项目为依托,利用路面基层水稳混合料的铣刨料为台背回填材料,提出道路拼宽段路桥过渡段差异沉降控制方法。建立车辆振动模型,分析车辆经过路桥过渡段时的振动特性,并以最大瞬态振动值(MTVV)作为行车舒适性评价指标;以调查法确定的行车舒适性控制指标为标准,确定设搭板及未设搭板的路桥过渡段差异沉降控制标准。结果表明:当车辆经过不设搭板的路桥过渡段时,错台高度、行车速度均对行车舒适性影响较大;当车辆经过设搭板的路桥过渡段时,坡度变化率及行车速度对行车舒适性影响较大。搭板长度对行车舒适性有一定的影响:当车速较低、坡度变化率较小时,随着搭板长度的增加,行车舒适性增加;当车速较高、坡度变化率较大时,随着搭板长度的增加,行车舒适性反而有所降低。可见,设计时确定合理的搭板长度十分重要。  相似文献   

12.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

13.
基于数值模拟与现场实测,对气泡混合轻质土在路桥过渡段中的工程特性及沉降变形进行了分析,结果表明:路基沉降变形随着气泡混合轻质土容重的增大而呈线性增长,分层填筑厚度越大,沉降变形增长速率越快;沉降变形随气泡混合轻质土弹性模量的增大而逐渐减小;分层填筑高度对路基沉降变形影响较大,分层厚度越大,沉降变形越明显;建议气泡混合轻质土容重采用6kN/m3、弹性模量采用100MPa、分层填筑厚度采用0.5m;路基横断面的沉降变化呈"Z"字型,纵断面呈两阶段变化特征,最大沉降变形分别为20mm和25.8mm;工后实测结果表明,路基最大沉降量仅为46.3mm,且稳定沉降值均小于30mm,沉降变形控制效果良好。相关研究理论和工程经验可为类似工程提供参考。  相似文献   

14.
《公路》2017,(10)
为了研究路桥过渡段不同区域的环境振动规律,针对109国道桑干河大桥过渡段,现场测试了不同车组匀速通过过渡段时路面结构的振动水平,分别从振动加速度时程、振动加速度频谱及振动加速度振级分析路面结构动力响应特性。由研究结果可知:振动加速度随距桥台距离的减小而增大,桥台附近桥面结构的振动加速度最大;在大型车辆附加荷载作用下,桥面结构主要为低频振动,小型车辆主要引起桥面结构的高频振动;加速度振级随车辆载荷的增大而增大,由于"跳车"现象,桥台附近桥面加速度振级最大;结合过渡段动力响应规律,控制过渡段沉降差是公路过渡段研究的重点。  相似文献   

15.
塞西亚桥位于意大利新建都灵-米兰高速铁路线上,为7跨简支钢-混凝土组合梁铁路桥,总长322m。介绍高速列车通过时该桥的现场动力测试及动力响应预测计算模型的试验验证。对高速列车(行车速度288km/h)通过时的该桥动力响应进行预测,并将预测结果与试验数据进行比较研究,给出高速列车激励作用下钢-混凝土组合梁铁路桥的结构特性。  相似文献   

16.
以具体工程实例为依托,采取动力有限元与无限元相结合的分析方法,建立锚固边坡振动模型,对列车长期高速振动荷载影响下边坡岩土体及其锚固结构的动力响应特征展开了研究。结果表明:竖向位移动力特征显示,在高速列车荷载作用下,边坡竖向位移及加速度的最大值发生在坡脚处,最小值发生在坡顶处,随着边坡高度增加,竖向位移逐渐降低,且预应力锚杆框架对列车振动引起边坡沉降起到了一定的控制作用;水平位移动力特征显示,随着边坡高度增加,无锚固边坡水平方向位移峰值逐渐增大,水平位移动力响应最大值出现在坡顶,而坡脚的水平位移最小;列车荷载持续作用下,边坡岩土体内振动荷载逐步向远端传播,边坡位移变化范围也逐渐开始扩大,位移量值也开始增大,坡脚至第二级中部位移量达到1mm;在列车荷载作用下,上排锚杆轴力呈波动缓降趋势,缓降幅度0.63%,下排锚杆轴力呈波动上升趋势,上升幅度0.55%;边坡底部动态响应最为明显,振动加速度增幅最大,速度增幅次之,位移变化幅值最小,表明边坡底部的动力响应敏感性要显著大于边坡其他部位,这在边坡设计、加固治理中应引起格外注意。  相似文献   

17.
以中兰客专某车站为例,采用ABAQUS有限元软件建立胶黏道砟道床过渡段的车辆-轨道-路基空间耦合模型,分析列车双向行驶时不平顺激励下折角沉降差异值的影响规律。研究结果表明:折角沉降差异值增大时,列车从无砟轨道至有砟轨道钢轨垂向振动位移与轮轨力增大幅度明显大于反向行驶;上行和下行钢轨垂向位移最大峰值点均处在折角沉降起点9 m的位置,而车体垂向加速度、轮轨垂向力上行和下行其峰值点位置均不相同。  相似文献   

18.
高速铁路路桥过渡段的动力分析与结构设计   总被引:1,自引:0,他引:1  
高速铁路路桥过渡的不平顺问题包含两个方面:一是受列车载荷影响较大范围内(基床以上部分)线路结构抵抗变形的能力,即轨道综合模量(基床以上部分)线路结构抵抗变形的能力,即轨道综合模量(刚度)平顺过渡的问题;另一方面是刚性桥台与柔性路基间工后沉降差引起轨道弯折的变形限值问题。根据高速铁路路桥过渡段车辆/轨道/路基系统的动力分析,路桥间刚度差的变化对行车的安全和平稳有一定影响,但不作为设计的控制条件。由路  相似文献   

19.
桥头跳车问题影响着铁路建设和运营,存在着迫切需要解决的问题。结合当地实际情况,开展相关研究,有效减轻差异沉降和桥头跳车的影响,具有重要的现实意义。本文采用有限元计算方法,通过建立路桥过渡段容许差异沉降计算模型,分别对路桥过渡段沉降与底宽的关系、路桥过渡段的高度与沉降的变化关系、路桥过渡段沉降与过渡段泊松比的关系、普通路堤填土弹性模量与路桥过渡段沉降的关系进行了详细分析。  相似文献   

20.
路桥过渡段差异沉降对搭板性能的影响   总被引:2,自引:0,他引:2  
李智峰  陶向华  李冬梅 《公路工程》2009,34(1):77-80,89
对设置搭板的路桥过渡段路面进行简化,应用Abaqus有限元软件建立了三维路桥过渡段计算模型,并采用drucker-prager弹塑性本构模型来描述路基(包括地基)土材料的本构关系.通过计算得到了一定差异沉降下搭板最大垂直变形的指数表达式,搭板性能参数与最大垂直变形和路桥过渡段差异沉降的关系;并通过改变搭板厚度和长度分析了路桥过渡段差异沉降对搭板性能的影响,结果表明在一定的差异沉降影响下,增加板厚对板受力与变形都有利,增加板长仅对搭板受力有利.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号