首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了使曲线钢箱梁斜拉桥成桥后达到合理的内力和线形状态,以穗盐路斜拉桥为背景,基于无应力状态法,以钢箱梁制造线形为目标,进行全桥施工控制.在确定合理成桥状态下,计算了钢箱梁的制造线形,悬臂拼装时按制造线形夹角进行拼装,并保证合龙段的无应力拼装,则最终成桥必会达到合理成桥状态;讨论了无应力索长的计算方法,用无应力索长差实现全桥调索的一次性完成;该桥的横向效应计算结果表明水平横向弯曲效应明显,弯扭耦合效应并不明显,可按直线桥对主梁进行线形控制.监测结果表明,成桥后索力误差在5%之内,主梁线形满足设计要求,结构内力状态良好.  相似文献   

2.
针对钢箱梁斜拉桥成桥目标线形的实现,以厦漳跨海大桥北汊主桥为例,提出基于无应力状态控制法理论的主梁预拱度取值、制造尺寸确定、预拼装线形计算及悬臂拼装控制方法.该桥为多跨连续半飘浮体系钢箱梁斜拉桥,采用桥梁结构设计系统SCDS2011建立桥梁有限元模型,求得钢箱梁设计预拱度;钢箱梁制造尺寸确定时考虑竖曲线和设计预拱度及梁体轴向压缩、弯矩转角的影响;以预拼装线形为基础计算得出每节段前、后控制点的坐标值进行预拼装;在钢箱梁悬臂拼装过程中进行线形控制时,考虑安装阶段的计算挠度及成桥状态与设计预拱线形的高程差.事实证明,采用该方法对钢箱梁斜拉桥进行成桥目标线形的控制取得了良好的施工精度.  相似文献   

3.
港珠澳大桥深水区非通航孔桥为110m跨连续梁桥,主梁为等截面钢箱梁,宽33.1m,高4.5m。该桥钢箱梁采用大节段逐跨吊装施工,为了确保最终的成桥线形满足设计要求,在大节段钢箱梁制造阶段,基于梁段的真实重量准确计算了无应力制造线形,同时合理布置支墩,使大节段钢箱梁组拼时处于近似无应力状态;在吊装阶段,保持大节段钢箱梁吊装、搭接平稳,确保钢箱梁和临时牛腿结构安全;在安装阶段,考虑制造误差、体系转换及温度等因素,控制钢箱梁的梁长,合理地设置支座预偏量,并选择在温度平稳的时段内进行大节段钢箱梁的匹配。通过对大节段钢箱梁施工的全过程控制,首联钢箱梁线形实测值与理论值的误差控制在13mm之内,桥梁线形控制取得了良好的效果。  相似文献   

4.
为研究规范允许范围内的主梁随机制造误差对大跨度钢箱梁斜拉桥成桥线形的影响,以自适应无应力构形施工控制理论为指导,以大跨度双塔斜拉桥——石首长江公路大桥为例,分析和研究主梁构件随机误差效应对斜拉桥主体结构的影响和传播特性,研究主梁随机制造误差对斜拉桥结构的不利影响。结果表明:施工过程中和成桥时的主梁线形会因为主梁在制造时微小的几何随机误差而发生改变,梁长随机误差对成桥线形的影响并不明显,相邻梁段间的随机转角误差对成桥线形影响相对较大,随机制造误差引起的成桥线形误差过大时,通过安装索力的优化调整可有效降低成桥线形误差。  相似文献   

5.
江顺大桥主桥为主跨700m的双塔双索面混合梁斜拉桥,该桥钢箱梁采用悬臂拼装施工,边跨预应力混凝土箱梁采用支架现浇法施工。为保证成桥后的线形及内力满足设计要求,采用MIDAS Civil软件建立全桥杆系有限元模型,并基于无应力状态法对该桥进行施工控制。在施工控制中,采取了桥塔应力及线形控制、塔内斜拉索锚固块预抬量及钢锚梁预抬量控制、主梁的钢箱梁制造线形及施工线形控制、斜拉索的下料长度及施工中斜拉索索力控制等关键控制技术。成桥后对桥塔应力和偏位、主梁测点高程、斜拉索索力的实测值与理论值进行对比分析,结果表明:以上各数据的实测值与理论值均吻合较好,误差均在合理范围内,满足设计要求,成桥状态良好。  相似文献   

6.
广西柳州凤凰岭大桥为(96+124+3×130+90) m连续钢-混组合梁桥,主梁为等高双箱单室钢-混组合梁,由槽形钢箱梁和混凝土桥面板构成,梁宽46.6 m,该桥竖曲线由3段圆曲线和2段直线组成。钢梁采用连续步履式顶推、跨间不设临时墩的方案施工,最大顶推跨度达130 m。由于该桥竖曲线线形复杂、顶推悬臂长度较大、桥面板及体外预应力束施工工序繁杂,为确保施工中结构安全、成桥线形和内力满足设计要求,从线形控制、导梁过墩控制、桥面板安装控制等方面进行施工控制。钢梁顶推施工时,采用几何状态传递法对各梁段安装线形进行预测与控制,确保成桥线形满足设计要求;分析临时拉索张拉、环境温度改变与导梁前端位移响应关系,计算临时拉索张拉力,通过张拉临时拉索实现导梁顺利过墩;桥面板施工时,对皮尔格铺装法进行优化,改变桥面板安装顺序,确保了钢梁及桥面板应力满足要求,并缩短了工期。通过以上施工控制,该桥钢梁顺利顶推完成,全桥线形平顺,实测主梁线形满足设计要求,成桥状态良好。  相似文献   

7.
为保证厦漳跨海大桥北汊主桥(主跨780m的双塔双索面半飘浮体系钢箱梁斜拉桥)成桥后内力和线形满足设计要求,采用以无应力状态法为理论基础的施工控制方法,考虑结构非线性,进行参数识别和平差计算,根据桥梁结构特点确定合理的成桥及施工阶段状态,对该桥进行施工控制.在施工控制中利用无应力夹角确定钢箱梁现场安装位置,利用索长拔出量快速确定张拉索力,并根据大桥结构特点及温度变化情况,采用单侧顶推为主、配切为辅的中跨合龙方案,有效地控制了合龙风险.通过全面严格的施工控制,厦漳跨海大桥北汊主桥实现了高精度顺利合龙,桥梁线形及内力均符合设计要求.  相似文献   

8.
结构参数误差是斜拉桥施工控制过程中误差产生的重要来源.为分析结构各设计参数对桥梁成桥状态影响的敏感性,以江津观音岩长江大桥为背景,采用有限元法计算各设计参数对大跨度结合梁斜拉桥主梁成桥线形和主梁应力的影响.结果显示:主梁重量、拉索制造长度、桥面板重量和温差对该桥主梁成桥线形及主梁应力有显著影响;桥面板弹性模量和主梁弹性...  相似文献   

9.
柳州市维义大桥为主跨288 m的连续钢桁拱桥,该桥钢梁采用临时支墩搭设膺架半悬臂拼装法架设,为了解施工过程中的结构内力及线形状态是否满足设计要求,指导施工,运用无应力状态法,采用桥梁结构分析软件MIDAS Civil建立空间模型对该桥进行全过程施工控制.施工控制结果表明:在施工过程中各阶段线形、应力、索力、钢梁抗倾覆稳定性等控制指标与理论分析结果基本一致,成桥的线形和内力状态与控制的预期目标吻合良好.  相似文献   

10.
无应力状态控制法——斜拉桥安装计算的应用   总被引:8,自引:7,他引:1  
利用分阶段施工桥梁结构的力学平衡方程和无应力状态按制法的基本原理确定斜拉桥施工中间过程理想状态.以桥梁构件单元的无应力状态量必须满足成桥目标状态要求作为控制条件,直接由斜拉桥最终设计成桥目标状态求解桥梁施工过程状态的内力和线形.混凝土斜拉桥施工过程的收缩和徐变实际上是改变了构件单元的无应力长度和无应力曲率,应通过施工中的预拱度来调整.  相似文献   

11.
大跨度钢-混凝土组合结构连续箱梁施工线形控制   总被引:2,自引:0,他引:2  
上海长江隧桥工程B4标钢-混凝土组合结构连续箱梁是国内最大的组合梁结构,采用梁场预制,浮吊安装的世界先进施工技术,组合梁设置了纵坡,并位于不同曲率半径的曲线上,线形控制非常复杂.介绍其钢梁节段拼装、整孔吊装段的总拼、钢-混凝土叠合、墩顶合龙等关键施工阶段的线形控制措施及效果.  相似文献   

12.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

13.
嘉绍大桥大吨位提升站设计与施工   总被引:1,自引:0,他引:1  
娄松 《世界桥梁》2012,(2):16-19
嘉绍大桥上部结构施工中,为满足架桥机的拼装及节段箱梁的提升功能需在深水域设置大吨位提升站,该提升站控制起吊净重达300t,起吊跨度达53m。考虑强涌潮水压力的制约、冲刷以及台风的影响,经综合比较,采用固定式提升站方案。提升站立柱采用钢管结构,下部为打入钢管桩,钢管桩通过联结系与主桥基础连接,充分利用主桥基础抵抗部分水平力;提升站主梁采用钢箱梁,单个提升站设置2片主梁,主梁上方布置单侧单轨移动天车。提升站立柱在工厂分段制造,工地上现场拼装;主梁在工厂分3节制造,运输至现场焊成整体。  相似文献   

14.
为确定合理的临时支撑间距与拆除时机、负弯矩区剪力连接件类型及是否设置桥面板预留槽等,以便于钢-混组合连续梁桥设置合理的预拱度,以某(40+75+75+40)m钢-混组合连续梁桥为背景,采用MIDAS Civil软件建立全桥有限元模型,分析相关设计与施工因素对预拱度设置的影响规律。结果表明:钢梁拼装时应采用临时密支撑,并在正弯矩区桥面板混凝土浇筑后再拆除临时支撑;负弯矩区应采用抗拔不抗剪连接件,桥面板正、负弯矩交界区域应设置桥面板预留槽;仅边跨设置向上的混凝土收缩徐变预拱度值,而中跨不需设向下的混凝土收缩徐变预挠度值。该桥边、中跨跨中钢梁制造预拱度分别为17.7mm和161.9mm,施工时考虑了10mm的弹性变形预抬值。成桥时组合梁线形误差在±10mm内,满足设计要求。  相似文献   

15.
悬索桥扁平钢箱梁顶推施工受力分析   总被引:1,自引:0,他引:1  
某3跨地锚式悬索桥加劲梁为扁平钢箱梁,钢箱梁跨径组成为(40+430+40)m,采用多点临时墩顶推施工。为了确保钢箱梁在顶推施工过程中结构安全,建立有限元计算模型对顶推施工过程进行整体和局部受力分析。计算结果表明临时墩支点高程设置形式、滑道支承形式和横向偏位等对钢箱梁受力影响较大。根据计算结果提出了钢箱梁顶推施工过程线形控制、临时墩反力控制及局部应力施工控制等参数以及相应控制措施。实际顶推施工结果表明钢箱梁受力及线形控制较好。  相似文献   

16.
128m双线铁路简支钢桁梁桥设计   总被引:2,自引:0,他引:2  
任万敏  朱敏  袁明 《桥梁建设》2012,42(1):79-83
赵寨颖河双线特大桥主桥为128 m下承式简支钢桁梁桥.主桁采用带竖杆的三角形腹杆体系;主桁弦杆均采用箱形截面,内力较大的腹杆采用箱形截面,内力较小的腹杆采用H形截面;在上弦杆平面内设置交叉式上平纵联;采用密横梁整体正交异性板有砟桥面系.该桥采用在岸边临时支架上拼装钢桁梁及导梁,在河中设置2个临时支墩的半悬臂拖拉法施工.采用MIDASCivil 2006建立主梁三维有限元模型,计算主梁杆件内力及位移、预拱度、自振特性,计算结果表明该桥设计合理,满足规范要求.  相似文献   

17.
武汉军山长江公路大桥主桥为5跨连续半飘浮全钢梁斜拉桥,主梁为全焊流线形扁平钢箱梁,梁高3m,总宽38.8m。重点介绍该桥索区钢箱梁的安装工艺、斜拉索挂索和张拉的施工方法,并简要介绍了施工控制原则。  相似文献   

18.
天津富民桥空间索面自锚式悬索桥施工采用先梁后索法,主跨钢箱梁采用水中平台拖拉法施工,边跨钢箱梁采用大吨位吊车直接吊装施工.主要介绍该桥钢箱梁的施工技术.  相似文献   

19.
天津海河开启桥为一座跨径为76 m的双页立转式开启桥,针对开启桥安装精度要求高,施工期间受海河通航条件限制,提出该桥钢箱梁架设采用半支架悬拼装方案。该桥钢箱梁单侧纵向分0~5号块,薄壁空腔内与轴承座附近的钢箱梁采用有支架施工,搭设钢管型钢支架,利用架桥机配合千斤顶依次安装0~3号块;跨中部分的钢箱梁采用架桥机悬臂拼装,利用300 t驳船将4号、5号块依次浮运至航道中央,利用架桥机提吊安装,精确定位后焊接成整体。通过线形监控及独特的钢梁尾销及跨中对中销装置的安装控制方法,实现了桥梁线形与跨中锁定合龙的双重控制。  相似文献   

20.
交通类火灾严重威胁钢结构桥梁的耐久性和安全性。为提升复杂环境(开放火灾和弯桥荷载)下连续弯钢箱梁的耐火性能,增强钢结构桥梁的安全服役寿命,选取大型立交桥枢纽工程中两跨连续弯钢箱梁为研究对象,通过建立耐火试验验证的钢箱梁与混凝土刚性基层协同工作的数值预测模型,深入揭示开放环境碳氢火灾下传热模式和结构特征耦合的箱梁力学行为演化规律。研究了局部环境火灾作用下结构的高温响应与失效模式,分析了复杂荷载状况、弯曲半径与支座布置方式对连续弯钢箱梁火灾响应行为的影响,提出了复杂环境下连续弯钢箱梁的耐火性能提升方法。研究结果表明:连续弯钢箱梁在火灾下的内外侧挠度差值不断增大,主梁内外侧支座反力的变化呈相反趋势,并且在受火初期支座反力变化程度剧烈;受火区域边缘靠近中支点的底板与腹板严重屈曲从而先形成塑性铰,然后在受火跨跨中形成塑性铰,随即整跨结构发生突然性垮塌;荷载水平的增大会显著缩短其耐火极限,受火前期及时撤离桥上的车辆荷载能够有效地延缓变形发展并且避免结构的突然性垮塌;曲率半径小于200 m会显著加剧连续弯钢箱梁高温下的弯扭耦合效应,增大主梁内外侧挠度差值与内外侧支座反力变化幅度,削弱火灾下结构的整体稳定性能;在钢结构桥梁抗火设计时中支点应设置抗扭支座,常温下支座的布置方式对火灾下连续弯钢箱梁的支座受力状况改善甚微,应在支座与梁端附近增设外部限位装置以防止结构变形过大。研究结论可为提升复杂环境下钢结构桥梁抵抗火灾的能力以及增强安全服役寿命提供设计依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号