首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
城市轨道车辆储能再生制动试验系统研究   总被引:3,自引:3,他引:0  
提出了一种能量互馈式城市轨道车辆储能再生制动试验系统方案,介绍了城市轨道车辆储能再生制动试验的原理及组成,分析了试验系统主电路的组成以及储能变流装置的电路拓扑,给出了储能变流装置3种不同的工作模态和工作原理的分析,结合电压电流双闭环控制实现超级电容的储能,从而控制再生制动能量的回收。同时介绍了城市轨道车辆储能再生制动试验系统的主要技术指标,并利用检测系统对试验数据进行采集和处理。城市轨道车辆储能再生制动试验系统具有节能、工作可靠、精度高等特点。  相似文献   

2.
目前城市轨道交通再生制动能量大部分由电阻消耗,利用率较低.设计了储能型再生制动能量并网系统,研究了再生制动能量在并网系统与储能系统之间的分配关系.阐述了系统的组成及设计方法,给出储能优先和并网优先2种控制策略,并通过仿真进行对比分析.仿真结果验证了储能优先策略可行、有效,能够减小再生制动功率对交流电网的冲击,实现再生制动能量的循环利用.分别建立了逆变回馈系统和储能系统的试验模拟装置,通过试验结果验证了控制策略的可行、有效.  相似文献   

3.
储能式电力牵引轻轨车电气牵引系统研制   总被引:3,自引:3,他引:0  
介绍了储能式电力牵引轻轨车辆参数及性能要求,阐述了电气牵引系统牵引/电制动特性、列车运行能力仿真计算、主电路、控制系统、储能管理系统,分析了储能式牵引系统与传统电气牵引系统的对比情况。该车已完成线路例行试验和型式试验,各项性能满足设计要求。  相似文献   

4.
针对有轨电车混合动力系统储能部件工作特性,开发了混合动力储能部件特性测试平台。介绍了测试平台的工作原理、系统总体结构,以及平台软硬件系统的组成,阐述了储能部件电压、电流等参数的测试方法。运用该平台,对超级电容、蓄电池产品进行了充放电特性测试,得到了储能部件产品的充放电特性曲线及相应的数据库,为储能部件的选型提供了数据支持。  相似文献   

5.
储能式四模块现代有轨电车采用间歇式供电方式,储能电源连续工作时间长,充放电电流较大,散热问题突出。为有效解决其散热问题,在传统轨道交通空调系统技术方案的基础上,文章对变频、高压直流、空调系统减重、高效率微通道换热器、废排风二次利用及新风量调节等高效能技术进行了研究及应用,有效提高了储能式四模块现代有轨电车空调系统的能效比,降低了空调系统及整车能耗。  相似文献   

6.
飞轮储能系统具有瞬时功率大、储能密度大、效率高、使用寿命长、环保无污染等优点。基于飞轮储能在不同领域的技术优势,本文结合该项技术在国内外的应用情况以及国内城市轨道交通领域不同类型再生制动能量吸收装置的特点,介绍了飞轮储能系统工作原理和构成,对比分析了其在城市轨道交通应用的优势及方向,并介绍了飞轮储能系统在北京地铁的应用情况。随着飞轮生产成本的降低,飞轮储能技术在城市轨道交通领域将拥有更为广阔的应用前景。  相似文献   

7.
集成式双向DC-DC储能低地板有轨电车牵引系统   总被引:2,自引:1,他引:1  
介绍了一种集成式双向DC-DC储能低地板有轨电车车辆参数及性能要求,阐述了牵引系统牵引/电制动特性、系统组成、系统匹配控制策略等。储能式低地板有轨电车牵引系统由牵引逆变器、双向DC-DC变换器、储能系统构成,其中牵引逆变器与双向DC-DC变换器集成在主变流器中,满足了列车牵引—制动、有网/无网区段等多种工况的应用。  相似文献   

8.
研究基于"接触网+超级电容"为动力源的储能式有轨电车运行仿真系统。通过对超级电容储能式有轨电车进行建模、计算及运行分析,给出了仿真系统软件架构及各功能模块,并利用Qt软件开发该储能式有轨电车运行仿真系统,通过现场实验数据对仿真结果的有效性进行验证。  相似文献   

9.
为提升储能式有轨电车项目的运用管理水平,优化后续新建项目设计,降低项目全寿命周期成本,以广 州海珠试验段、广州黄埔 1 号线及三亚有轨电车项目的车辆储能系统为研究对象,结合各自线路供电系统的设计 特点,对 3 种不同系统所采用的关键技术原理、能量存储及消耗参数、运营维护重难点、使用寿命及成本等方面 进行对比分析。其中,在设备运用可靠性方面,超级电容和电池电容储能系统具有一定的优势;在可维护性方面, 3 种系统制式均存在维护难点;电池电容储能系统的衰减程度较大。综合来看,在提升单一制式储能系统的续航 能力和混合供电系统运用可靠性的基础上,适当简化供电系统,开展集约型的设计,将是今后储能式有轨电车工 程的发展方向。  相似文献   

10.
目前,混合储能式有轨电车作为一种高性价比的交通工具已得到广泛应用。混合储能系统承担着有轨电车供能任务,合理配置储能元件对于保障有轨电车正常运行具有重要的现实意义。以混合储能式有轨电车作为研究对象,在多目标、多约束条件下,利用粒子群优化算法,求解混合储能系统最优参数匹配方案;以广州海珠有轨电车THZ1线作为实例进行仿真验证,结果表明:最优配置混合储能系统在降低储能系统的体积、重量及成本、发挥储能元件充放电能力方面具有明显的优越性。  相似文献   

11.
文章介绍自主化四模块单车型储能式有轨电车主要技术特点,从牵引辅助系统、设备布置、储能电源、转向架、制动系统以及贯通道等方面详细阐述主要系统及部件的特点及性能。  相似文献   

12.
超级电容能量密度低,以超级电容为储能元件的储能式有轨电车储能能量较少,有可能出现由于能量不足而故障停车。为解决该类问题,基于对有轨电车超级电容系统和供电系统的分析,提出车载储能系统配置改进方案。通过对改进方案的仿真分析及经济性分析,认为基于锂离子电池的储能系统方案在满足有轨电车原有牵引特性不变的前提下,具有更好的经济性。在有轨电车全寿命周期(30年)内,该方案供电系统的建设成本、储能系统一次性采购及更换成本,以及运营成本都大幅下降,全寿命周期成本降低了51.14%,具有良好的工程应用前景。  相似文献   

13.
以广州地铁6号线浔峰岗牵引变电所为例,介绍了采用线路储能装置进行能量回馈利用的设计过程,分析了线路储能装置的加装工程方案及其工作状态,以及线路储能装置同制动电阻能耗系统的配合方式,分析了线路储能装置加装工程完成后浔峰岗站的综合能量消耗、线路储能装置回送能量及经济效益。  相似文献   

14.
针对现阶段城市轨道交通车辆采用电阻消耗再生制动电能带来的隧道温升、车体质量增加、能量浪费等问题,对城市轨道交通用再生制动锂电池储能系统进行研究,分析其工作原理、结构及功能,并提出锂电池储能系统充放电控制策略。以广州地铁4号线为例进行了仿真,仿真结果表明,锂电池储能系统可以有效抑制牵引供电网的电压波动。  相似文献   

15.
城市轨道交通列车再生制动能量利用系统包括再生制动能量回馈系统、再生制动能量储存系统和混合型再生制动能量利用系统。回馈型系统可实现交流电网与直流母线的能量双向流动;储能型系统是将列车多余制动能量存储到储能单元中,起动时再将能量释放出来供列车使用,储能元件有超级电容、蓄电池及飞轮;混合型系统是回馈型和储能型的组合,其功能及性能兼具2种系统的特点。3种系统方案各有特点,均可实现列车制动能量回馈利用,减少电网能耗,不仅在节能环保方面有重要意义,对于整个城市轨道交通行业降低运营成本将具有重大影响。  相似文献   

16.
提出了一种能量互馈式城市轨道车辆交流传动试验系统方案,介绍了城市轨道车辆交流传动试验系统的原理及组成,分析了试验系统主电路的组成以及储能变流装置的电路拓扑,给出了储能变流装置3种不同的工作模态和工作原理的分析,结合电压电流双闭环控制实现超级电容的储能,从而控制再生制动能量的回收。利用城市轨道车辆交流传动试验平台可开发电力牵引系统、电制动控制系统、模拟列车在预定线路和预定载荷及司机手柄位控制下运行,同时利用检测系统对试验数据进行采集和处理。系统具有节能、工作可靠,精度高等特点。  相似文献   

17.
针对高速铁路山区路段列车运行特性导致的牵引网电压出现抬升与降落及网侧谐波含量较高易引起牵引网谐振过电压的问题,提出一种基于车载储能系统的解决方案.首先提出考虑牵引网电压波动的车载储能系统拓扑,并根据储能系统SOC及列车实时功率对储能系统的工作状态进行划分.其次研究山区路段列车行车致使牵引网电压波动的机理,在此基础上分析...  相似文献   

18.
通过分析建立轨道交通车辆制动车载储能系统的必要性,提出使用超级电容型储能系统的合理性。建立了城市轨道交通车辆制动车载储能系统模型,介绍了制动车载储能系统的工作原理,分析了主要器件参数的选取依据,其中包括超级电容电压范围的选取、超级电容器容量、超级电容器数量和电感量的确定。通过仿真计算再生制动能量的大小,从基于功率—容量约束确定最优初始充电电压,完成了超级电容阵列优化配置,为后期储能系统的整体结构设计以及电感和电容的选取提供了理论依据。  相似文献   

19.
超级电容快速的充放电特性能够满足地铁车辆频繁启停的工作需求。利用恒压双向功率流原理,建立了地铁车辆车载超级电容储能系统模型。在满足地铁车辆制动能量回收的基础上,对超级电容器组进行优化配置。建立了车载超级电容储能系统的全寿命周期成本计算模型、超级电容寿命计算模型及经济效益计算模型。通过实际算例对车载超级电容储能系统中的超级电容进行了配置,同时对其经济性进行了评估。结果表明,系统能达到预期的经济效益。  相似文献   

20.
随着储能式轨道交通车辆的研究与应用,受电系统作为储能式车辆的重要组成部分,其合理设计非常重要。文章对受电系统进行了介绍,轨道车辆重点对受电器与供电轨及受电器与回流轨的匹配分析过程进行了详细论述,为储能式轨道车辆交通的受电系统设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号