首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
专用短程通信(DSRC)协议是智能交通系统领域内的重要基础通信协议,已广泛地应用于高速公路电子不停车收费(ETC)系统、城市路桥拥堵收费系统等智能运输系统中.它可为车-路,以及车-车之间提供可靠、高效的数据传输.文中参考欧洲CEN DSRC标准,针对DSRC系统中低速数据延迟响应的问题进行分析,给出了低速数据延迟响应几种可能的实现方法,以完善国标DSRC标准.同时,该方法可推广应用在基于专用短程通信协议的智能交通系统中.  相似文献   

2.
章介绍了专用短程通信(dedicated short-range communications,DSRC)的研究现状,根据现有DSRC技术的标准,分析了其设备的硬件构成,论述了协议控制单元的系统结构和功能,进行了基于ADSP—BF531的协议控制单元的硬件设计,探讨了DSRC技术的具体应用。  相似文献   

3.
针对跟车巡航功能中由于单车传感器精度受限和单车信息孤立等影响跟车效率和安全性的问题,文章采用新一代专用短程通信技术,建立了基于车车协同的自动跟车系统,实现自车与前车的关键状态信息实时共享和交互,设计开发了一套基于专用短程通信的自动跟车控制策略,提高跟车效率和安全性。实车试验表明,基于专用短程通信技术的自动跟车系统可有效实现跟车功能,自动跟车过程表现稳定合理,自动跟车控制策略可实时控制自车在安全距离范围内紧凑且安全地跟车,很好地兼顾跟车安全性和道路通行效率。  相似文献   

4.
文章以基于卫星定位的道路不停车收费系统为应用背景,对基于5.8GHz专用短程通信技术的车-路通信稽查技术进行了研究和实现。首先对车-路通信稽查系统结构框架进行了简单介绍,同时对其中关键设备的软、硬件设计和实现方法进行了说明,随后对车-路通信稽查系统中的关键技术及其实现方法进行了详细具体的介绍。最后给出关键设备主要性能指标,并通过高速公路运行试验验证了系统在实际环境中的可用性。  相似文献   

5.
为实现卫星拒止环境下危险货物运输车辆的准确可靠定位,建立一种RFID/车载低成本传感器融合定位方法.以RFID输出的信号强度信息作为信息源,采用最小二乘支持向量机方法准确估计读写器与标签之间距离,并具备不同工作环境下的高泛化能力;引入车载传感器信息,建立改进车辆运动状态模型以准确描述车辆运行状态,设计一种自适应分散化信息滤波方法实现无线射频与车载传感器信息的融合定位.为有效隔离RFID失效信息,并实现异源异步信息融合,采用分散化架构而非传统集中式滤波实现融合,同时,在滤波器中提出并融入自适应规则判断RFID信息的有效性以决定是否隔离故障信息,从而提升融合算法的准确性和鲁棒性.实车试验结果表明,融合定位精度达到了无遮挡环境下GPS的定位精度,相比于无线射频定位提升了58%,相比于航位推算提升了68%,相比于传统卡尔曼滤波融合提升了65%.特别是在存在标签失效情形下,性能的提升更为显著.   相似文献   

6.
智能交通系统中的公交车辆调度方法研究   总被引:17,自引:3,他引:17  
针对公交车辆调度现状及所处的运营环境 ,利用遗传算法 ( Genetic Algorithm,GA)的智能化特征 ,进行了公交车辆智能调度方法的研究。采用 GA的一点和二点交叉方式 ,确定了三种规模的不同调度方式。以北京 375路车运营线路为实例 ,得到了简洁的 GA公交车辆调度结果。仿真结果表明 ,该方法可有效地改善公交车辆运营调度优化效果 ,提高公交车辆的运营效率 ,为城市公交车辆智能化调度管理提供合理、有效的调度方法  相似文献   

7.
为了满足网联环境下自动驾驶车辆安全行驶的需求,必须实现车辆全时空高精度定位。针对单车定位(Single Vehicle Localization, SVL)方法的不足,提出了一种基于双层滤波结构的智能网联汽车协同定位框架。首先,基于卡尔曼滤波对各车辆状态进行修正;然后设计基于联邦卡尔曼滤波的协同定位估计方法,通过构建一个主滤波器和多个局部滤波器,将本车状态与修正后的邻车状态进行融合;使用多种数据拟合方法,基于真实数据构建传输时延概率模型,基于高斯分布构建处理时延概率模型;此外,提出一种通信时延误差补偿方法,并融入协同定位框架;最后,设计了5组仿真试验,评估SVL、未进行通信时延误差补偿的协同定位方法(CLWC)和基于通信时延误差补偿的协同定位方法(CLC)的定位性能,并深入分析了速度和行驶方向对定位结果的影响。研究结果表明:在城市道路环境下,CLWC相较于SVL,精度提高了15%~23%;在空旷道路环境下,通信时延较小情况时,CLWC优于SVL,CLC在CLWC基础上将精度进一步提高了5%~13%。在长直道、弯道、隧道等场景,CLC能够保证定位轨迹平滑,精度明显高于SVL,同时进一步验...  相似文献   

8.
全天候车辆视频检测白天和黑夜车辆时其检测条件差异很大,要选择不同的检测方法。在夜间无补光光源环境下,将摄像机获得的彩色视频图像进行灰度处理,夜间图像中汽车前照灯具有很强的特征,因此对灰度图像进行二值化处理和灰度统计来提取前照灯的特征,根据汽车前照灯在画面中的形态特征设计了相应的定位算法,实现了夜间车辆的定位检测。实验结果表明,该方法实现夜间车辆定位的突出特点是定位准确,且定位时间短,满足了视频交通系统实时性的要求。  相似文献   

9.
一种基于LQI的道路车辆定位方法实现   总被引:2,自引:0,他引:2  
设计了一种基于无线网络的,用于特定路段的车辆定位系统。对常用的无线网络节点定位的方式进行了对比分析,结合车用无线定位的特点,选择了基于LQI信号的无线定位方式。在定位算法的设计中,改进了三边测量法,给出了一种基于正方形形心的定位算法。设计了合理的定位模型标定方法,对所设计的定位模型进行了标定。从定位误差的角度对标定的定位模型进行了试验分析。试验结果表明,论文给出的基于LQI的无线网络节点定位方法达到了预期的定位要求。  相似文献   

10.
自动驾驶车辆行驶至隧道、高架桥下或高层建筑物林立的城区时,不能获取自身位置信息,导致自动驾驶和自动导航失效。为解决这一问题,设计一种特殊虚线交通标线,该标线由基本单元标线条单元和路面条单元组成,固定数量的基本单元按特定规则构成标线数据块,每个标线数据块对应一个二进制数进行信息编码,该码可表征数字、字母及特殊符号,信息编码后的标线就能表征车辆位置及道路交通设施信息,并设计配套识别程序,实现在特殊情况下对车辆所在位置的多种定位信息以及道路交通设施的多种管理信息进行现场数据查询、校核,为智能车辆运输、自动驾驶、无人驾驶、自动导航等系统提供特殊应急服务。  相似文献   

11.
标量场方法通常被用于无人机集群和潜艇集群的协同定位,但在车队场景中,应用磁异常场、水深场等类似的标量场存在困难。本研究提出了1种基于道路概率场和车辆运动模型的车队协同定位方法,该方法利用开源数据库获取电子地图,对地图进行缓冲区处理、栅格化处理和数学形态学处理,构建了道路概率场。同时,基于GNSS技术建立了车辆运动模型,利用车队内车辆之间的相对位置作为协同信息,把车辆预测位置在道路概率场中的取值作为权重计算标准,使用粒子滤波定位算法不断更新预测车辆行驶轨迹。新方法建立了道路概率场这一标量场,把车辆位置对应的道路概率值作为判定车辆位置的重要依据,将电子地图中的地理空间信息应用于车队协同定位。与传统的标量场方法不同,道路概率场无需新的专门测量,并且可以利用已有的海量电子地图资源进行生成,而车辆也无需新增传感器。此外,新方法根据不同场景设计了车辆运动模型,在车辆行驶过程中利用道路概率场不断优化轨迹,与传统车队定位方法相比更注重单个时刻点定位的差异。在真实场景和仿真场景中设置不同缓冲区宽度和车辆数进行对比测试,结果显示:根据定位误差作为定位效果的判定标准,与经典的利用车辆运动模型的扩展卡尔曼滤波方法相比,新方法在仿真场景和真实场景中将改进幅度分别提高了49.6%和49.8%;与空道路概率场的车队协同定位方法相比,在仿真场景和真实场景中新方法分别改进了59.5%和50.3%。本研究为车队协同定位提供了1种新的方法,通过构建道路概率场并利用车辆运动模型,相较于传统方法,该方法提高了定位的精度和可靠性,具有重要的应用前景。  相似文献   

12.
针对无人机航拍视角下存在整体图像分辨率高但占比较高的小尺度车辆检测特征点稀少这一问题,从卷积网络检测器针对性优化与基于目标分布特征的航拍图像自适应切分2个角度综合考虑,提出一种基于目标空间分布特征的无人机航拍车辆检测网络DF-Net。以单阶段目标检测框架SSD为基础,引入深度可分离卷积和抗混叠低通滤波器对网络结构进行优化搭建E-SSD,为后续检测网络搭建提供高效检测器;接着基于条件生成对抗CGAN思想构建密度估计网络生成器,从而得到航拍图像中车辆的准确分布特征,生成高质量的车辆密度图;将E-SSD与车辆密度估计网络结合,对车辆密度图进行自适应切分,并将切分后的局部图像与全局图像一同输入E-SSD,最后在决策层融合检测结果,由此实现对航拍视角道路交通场景下车辆目标的精确高效检测。在试验中,一方面将设计的基于目标空间分布特征的无人机航拍车辆检测网络DF-Net与E-SSD进行对比分析,另一方面将DF-Net与航拍目标检测领域表现较为优秀的网络进行比较。研究结果表明:设计的方法对于2个试验在均值平均精度指标上均有提升,与E-SSD网络对比时提升了至少4.4%,与航拍目标检测领域优秀网络比较时也有一定提升,并保持了较好的实时性。  相似文献   

13.
基于单线圈的车速检测算法研究   总被引:1,自引:0,他引:1  
简述了基于环形线圈车速检测的基本原理、目前利用单线圈检测量进行车速估计的方法。在此基础上,提出了一种利用单线圈进行车速实时检测的算法,并设计了一套基于单线圈的车速检测系统,通过采集系统在实验中的数据,运用Matlab6.5对该检测算法进行了仿真分析。结果表明,算法基本符合设计要求。  相似文献   

14.
为实现智能网联环境下低成本、高精度的车辆定位, 研究了基于自适应遗传Rao-Blackwellized粒子滤波的协同地图匹配算法。利用联网车辆的定位信息和道路约束条件消除公共偏差, 提高车辆定位精度。将自适应遗传算法引入到粒子滤波的重采样过程中, 增加粒子的多样性, 解决传统粒子滤波算法中容易出现的“粒子退化”和“粒子耗尽”问题。通过仿真实验与传统粒子滤波以及卡尔曼平滑粒子滤波下的定位结果进行了对比, 同时分析了不同联网车辆数目对定位精度的影响。通过实际测试验证了算法在实际应用中的定位效果。实测结果表明: 以典型十字路口为例, 在联网车辆数目为4的情况下, 协同地图匹配算法的定位误差范围为1.67 m, 分别为原始GNSS定位以及单车地图匹配定位结果的41.03%和56.80%。同时, 该算法的统计定位精度(CEP)达到1.06 m, 比GNSS原始定位精度提高了2.52 m, 具有较好的定位效果。  相似文献   

15.
高速公路场景图像的二值化及交通标志定位检测方法   总被引:5,自引:1,他引:5  
采用CCD摄像机采集高速公路场景图像,并通过图像颜色空间变换,将图像的RGB量值转换为色度-饱和度-亮度(HSV)量值。采用基于阈值的方法对场景图像中颜色饱和度分量进行二值化分割处理;利用场景二值化图像形状特征(周长、形状参数、圆形性参数)去除非目标区域,并通过搜索场景二值化图像方向投影值序列的突变点实现标志准确定位。采用HSV颜色模型中的亮度分量和最佳阈值法对场景图像中标志区域进行二值化处理。结果表明,应用上述方法能取得良好的效果。  相似文献   

16.
传统的车速引导策略考虑交通信号的信号配时(signal phases and timing,SPAT)信息和到下游交叉口的距离,来对车辆进行速度建议和引导,以提高交叉口通行效率、减少能源消耗。但由于通信设备频率的限制,实时诱导效果欠佳。随着车载设备与路侧基础设施通信技术(vehicle to infrastructure,V2I)的发展,能实时、同步地获取交通流的多维信息,研究了1种符合真实驾驶场景的实时变速引导策略。以信号相位时间和道路通行限制条件为约束,构建三阶段变速诱导模型。提出将车辆通过连续路口的车速引导问题分解为车辆通过多个相邻路口的子问题进行求解。针对任意相邻2个交叉口,求解车辆到达下游交叉口的可通行时间区域,并将到达时间区域离散化,计算车辆到达时间区域内的每1个时间节点的能耗。将连续路口车速引导问题转换为速度轨迹寻优问题进行求解,以车辆能耗为权重,采用Dijkstra算法在所有可通行速度轨迹中寻找能耗最小的速度轨迹。利用交通仿真软件SUMO搭建仿真环境,并用Python对SUMO进行二次开发,以武汉市经济开发区东风大道的3个连续路口为研究对象进行仿真验证。实验结果表明:所提车速引导方法在过饱和,饱和、欠饱和流量下,与多级最优策略相比能耗分别减少0.68%,1.64%,3.97%,与匀速策略相比能耗分别减少0.7%,2.60%,9.80%。所提变速诱导方法在不同交通流量情况下均能诱导车辆节能地驶离交叉口,在欠饱和流量下效果最佳。  相似文献   

17.
车流量检测是智能交通系统中的关键技术之一。研究了多种基于视频图像处理的车流量检测算法,包括基于灰度图像的背景差分法、帧差法、边缘检测法和基于彩色图像的色彩跳变检测法。在分析了以上算法在不同检测环境中适用性差异的基础上,提出了1种修正的背景差分法,并在此基础上实现了1种通用性更强的综合检测法。综合检测法结合背景差分法,边缘检测法和色彩跳变法三者优点,可依据光线条件自动选择检测区域和检测算法,适用于多种检测环境,准确率超过90%。  相似文献   

18.
针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进.使用快速候选区域提取算法提取图像中可能存在车辆的区域,之后使用深层卷积神经网络(CNN)提取候选区域的特征,并在卷积层中增加微型神经网络(MLP)对每层的特征进一步综合抽象,最后使用支持向量机(SVM)区分目标和背景的CNN特征.实验表明,该方法能够处理高复杂度背景条件下,部分遮挡、运动速度快的目标特征检测,识别率高达87.9%,耗时仅需225ms,比常用方法效率有大幅度提升.  相似文献   

19.
在对三维电子地图建模的基础上,提出了一种基于单GPS的虚拟差分、高程辅助定位和碰撞检测误差消除相结合的车道级车辆定位方法.该方法将车辆定位分为两次地图匹配过程,即首次通过虚拟差分技术和高程辅助定位技术对GPS定位参数进行修正,提高定位精度,然后在三维电子地图中结合碰撞检测技术实现车道级匹配.通过实地DGPS跑车对比实验,证明该方法完全能够满足车道级路径引导的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号