首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
根据前车的加速度大小及其变化率对前车的运动状态进行判断,当前车处于紧急制动或持续加速时,对基于车辆制动过程运动学分析的安全距离模型进行修正完善。在双轮模型的基础上进行了仿真实验,结果表明:当前车出现撞车时,完善后的模型依然能够达到避撞目的,当前车处于持续加速时,完善后模型在保证安全的前提下改善了道路的通过性。  相似文献   

2.
基于毫米波雷达的工作特性建立了前方障碍物目标识别算法,用以筛选影响车辆正常行驶的有效目标。基于最小安全距离模型建立车辆2级预警以及紧急制动系统,根据前车运动状态将模型分为前车静止、前车匀速或加速、前车减速或制动停车3种工况,利用Trucksim搭建车辆模型,在Matlab/Simulink中搭建雷达模型和2级预警模型,实现联合仿真。仿真结果显示,基于最小安全距离模型建立的2级预警紧急制动算法是合理的。  相似文献   

3.
相邻前车的驾驶行为会影响后车,因此先进的辅助驾驶系统需具备识别前车驾驶行为的能力. 对高速场景下相邻前车换道行为进行研究,分别提出双层连续隐马尔可夫模型-贝叶斯生成分类器(CHMM-BGC),以及基于双向长短时记忆网络(Bi-LSTM)的行为识别模型和意图预测模型. 采用自然驾驶数据集对模型的有效性进行测试验证. 实验分析表明:基于Bi-LSTM的行为识别模型相较于双层CHMM-BGC在平均识别率上提升了11.24%,两种行为识别模型均可在相邻前车换道过程的早期阶段识别换道行为;考虑相邻前车与周围环境车辆的交互作用,可使模型具有预测性,两种意图预测模型均可在车辆换道时刻前预测到驾驶人换道意图. 模型仿真计算时间可满足系统的实时性需求,为本车驾驶人预留出反应时间,为预测周围车辆行驶轨迹研究提供支持.  相似文献   

4.
适应ITS的交通流参数之间的关系   总被引:8,自引:8,他引:8  
流量、速度和密度是表征交通流特性的三个基本参数.随着ITS中纵向避碰技术和自动公路技术的应用以及车辆制动性能的提高,车辆能够以相同速度在较高的密度条件下行驶或在相同的密度条件下能够以更高的速度行驶.传统的流量-速度-密度关系将有变化.文中研究了适应ITS的交通流三个基本参数之间的关系模型,模型中引入了自由流密度,并用实测数据对模型进行了验证.  相似文献   

5.
基于航向控制系统的船舶动态避碰机理   总被引:1,自引:0,他引:1  
为探索航速矢量变化与船舶避碰之间的动态变化规律(避碰机理),研究了结合船舶领域和速度障碍等方法的静态避碰机理,确定了不考虑船舶改向运动过程与周围环境变化前提下,本船可避让所有物标的航速矢量区间;建立了基于模糊自适应比例积分微分(PID)控制和船舶运动方程的航向控制系统,再现船舶改向过程中的航速矢量非线性变化;基于静态避碰机理和航向控制系统研究了船舶动态避碰机理,求解了符合船舶操纵运动过程的动态避碰改向区间. 研究结果表明,在开阔水域随机设置的多物标环境中,可得到符合航速矢量非线性变化的动态避碰改向区间集合 [?90°,?72°]、[31°,47°]、[62°,79°],受动态船舶主要影响形成改向范围为(?72°,31°)、(79°,90°] 的碰撞航向区间,符合船舶操纵运动对改向避碰的影响规律,可为实现船舶避碰辅助决策、自动避碰和动态避碰路径规划提供基础理论和方法.   相似文献   

6.
为了提高信号灯前车辆的通行效率,改善交通流整体运行水平,本文从减少车辆延误和降低燃油消耗两个角度入手,在智能网联环境下,提出了一种车辆编组识别算法和针对编组头车的多目标线性轨迹优化模型(MOLP-pl)。首先对智能驾驶员跟驰模型(IDM)进行改进,调整车辆状态,减少车辆随机到达状态下车辆速度和车头时距分布的差异,同时为后续MOLP-pl轨迹优化模型的运行提供先决条件。在此基础上,以车辆编组为优化单元,通过车辆编组识别算法识别编组头车和跟随车辆,将编组头车的行驶轨迹作为优化对象并建立相应的数学模型。为了提高车辆轨迹优化模型的求解效率和精度,对其进行线性化重构,采用线性求解器计算编组头车加速度,构建编组头车最佳时空轨迹,然后,利用IDM跟驰模型计算跟随车辆的行驶速度,从而使编组车辆最大效率的通过交叉口。最后,利用SUMO构建的仿真实验表明:本研究提出的车辆轨迹优化算法可显著提高信号灯前车辆的通行效率,在三种不同的交通饱和度条件下,相对于无速度引导场景,车辆延误分别降低了8.56%、12.42%、64.79%,燃油消耗分别降低了17.21%、18.34%、12.64%;相对于逻辑控制场景,延...  相似文献   

7.
智能网联车辆为无信号交叉口的安全和效率提高提供新思路。以双向2车道无信号交叉口为研究对象,提出基于车辆轨迹预测的车车冲突检测算法,在此基础上制定基于车辆优先级、道路交通安全法、道路优先级的三级判定法则,由此提出冲突碰撞避免策略。以典型的交叉口交叉冲突场景为例,对5种避撞策略进行仿真测试。仿真结果表明,各种策略均能实现避撞,但前4种策略车辆延误均有所增加;以单车行程时间为效率指标,前车状态保持不变,后车在距离冲突点50 m处减速的策略为兼顾安全和效率的最优策略。  相似文献   

8.
将避碰决策系统分为船舶运动检测、视觉几何模型和船舶运动态势计算、碰撞预报及预控3部分.针对图像质量问题采取图像预处理增强、中值滤波、直方图均衡处理方法.采用相位相关算法基于背景模态模式静态空间信息记录图像信息,补偿图像抖动.基于视觉几何模型计算船舶运动态势计算船舶目标空间坐标位置、船舶型尺度、船速、船首向等.基于实时运动状态信息和桥区船舶运动态势预报碰撞危险以及避碰决策模式.引入避碰等级术语通过计算桥区船舶操纵避碰相关参数,进行避碰早期预警并得出避碰操纵决策方案.形成合理化的船-桥避碰决策系统,以达到船-桥避碰预警预控的智能效果.  相似文献   

9.
针对前车频繁变速而引起的电动车跟踪性差的问题,建立基于分层控制的自适应巡航控制系统。首先,考虑前车加减速变化的影响,采用可变时距策略作为期望安全车距,利用多项式拟合法分析不同车间时距对线性二次型最优控制算法的反馈增益矩阵的影响,建立基于改进线性二次型最优控制的上层控制器;然后,应用分数阶PID控制理论建立下层控制器,对期望驱动转矩和制动压力进行精确跟踪,并采用遗传优化算法寻优整定分数阶PID参数。研究表明:基于分层控制建立的自适应巡航控制器能保证车辆行驶安全性和舒适性,对前车频繁加减速工况具有较好的适应性,跟踪性能好。  相似文献   

10.
肖军 《交通与运输》2010,26(3):74-74
一、安全通过长距离公路桥 注意桥头的交通标志,严格执行限载、限速、限高等规定,尽量减少或避免对桥的冲击和震动,中速平稳行驶,保持足够动力,尽可能减少变速、制动、会车及超车的次数。桥上行驶应与前车始终保持安全车距,一般桥上车距标准以两倍的平路上的车距为宜。桥上不宜停车,要主动避让对方来车,不争道抢行。  相似文献   

11.
为减少高速公路车辆追尾和连环追尾等事故,本文研究了车联网信息技术高速公路预警与避险模型.本文利用车联网系统,将交通事故快速预报给后方车辆,并实时分析路面车辆信息,帮助后方车辆及时做出合理应急方案和应急措施.试验证明,跟车预警模型能够及时提醒驾驶人员避免追尾,在无法避免正面碰撞时,应急避险模型能够根据路面状况做出有效判断,成功进行避险,避免连环追尾事故发生.公路试验中第3车减少制动距离9.2 m,第4车减少制动距离21.4 m,较大地缩减事故后续车辆行车制动距离,能够在密集的行车路段,有效降低连环追尾事故的发生,提高高速公路交通运输安全.  相似文献   

12.
利用主动横摆力矩控制汽车制动稳定性,确立了控制目标和控制策略,建立了基于车道偏移距离的Fuzzy-PID控制模型和轮胎神经网络辨识模型,设计了Fuzzy-PID控制器并利用模糊推理方法对PID控制器的3个参数进行在线自适应调整.仿真与试验结果表明,利用主动横摆力矩Fuzzy-PID控制方法,能减少汽车在对开路面制动时的侧滑和激转等危险,使汽车在制动偏驶后能快速恢复正确行驶车道,且Fuzzy-PID方法比PID控制方法具有更好的控制效果.  相似文献   

13.
基于横向控制器和纵向控制器模型,包括校正的预瞄驾驶员模型、加速度控制模型、节气门控制模型和制动器控制模型,建立Matlab/Simulink 和CarSim 车辆联合仿真平台,并对其可行性进行分析与验证.利用平台分别仿真协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车队车辆紧急刹车,通信延时,起步加、减速工况和车队前方插入换道车辆4 种情况下CACC车辆的行驶状况.仿真发现:紧急刹车时车队能够实现较好的紧急避撞;在通信延时的情况下,车队仍能保证行车安全;车队起步、减速工况运行较平稳,但加速度并不平稳,不利于车队后方车辆的乘坐舒适性;车队对前方插入不同速度的车辆能够及时响应并最终恢复安全行车间距.  相似文献   

14.
基于横向控制器和纵向控制器模型,包括校正的预瞄驾驶员模型、加速度控制模型、节气门控制模型和制动器控制模型,建立Matlab/Simulink 和CarSim 车辆联合仿真平台,并对其可行性进行分析与验证.利用平台分别仿真协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车队车辆紧急刹车,通信延时,起步加、减速工况和车队前方插入换道车辆4 种情况下CACC车辆的行驶状况.仿真发现:紧急刹车时车队能够实现较好的紧急避撞;在通信延时的情况下,车队仍能保证行车安全;车队起步、减速工况运行较平稳,但加速度并不平稳,不利于车队后方车辆的乘坐舒适性;车队对前方插入不同速度的车辆能够及时响应并最终恢复安全行车间距.  相似文献   

15.
针对智能汽车行驶安全距离监测与防撞试验高成本、高危险性以及试验结果难以观察的问题,研究了智能汽车安全距离监测与防撞的虚拟仿真;应用Visual Studio 2015、3Dmax、Unity3D等虚拟仿真技术在虚拟制动控制系统中进行了可嵌入多控制模型的自动驾驶汽车行车安全距离监测和防撞虚拟仿真试验,测试了不同制动模型的...  相似文献   

16.
基于多刚体动力学仿真分析软件PC—Crash,建立车一人碰撞事故的再现模型,分别对同一工况下汽车有无ABS刹车防抱死制动系统、不同碰撞初速度以及利用随机函数确定汽车与行人的随机参数,进行大量的数字化仿真试验,分析事故发生后人体头部重要器官与车体前部碰撞点以及损伤程度的分布规律。根据分析结果,从汽车生产厂商保护行人的角度改善车身布置结构,提出有价值的参考意见。  相似文献   

17.
为了保持汽车紧急制动时的方向稳定性,提出了控制前轮制动轮缸压力差的控制方法.将防抱死制动系统的控制过程分为首次控制和常规控制,首次控制在保证车轮不抱死的情况下,利用前轴两侧轮速差辨识路面;常规控制根据辨识结果,在单一附着系数路面下采用前轮增压同步控制,后轮独立控制,在分离附着系数路面下采用前轮修正低选控制,后轮独立控制.根据国家标准规定试验方法和流程,在试车场进行了4种典型路面上的制动试验,试验过程中车辆的方向盘修正角在2 s内均小于30,远小于国家标准规定的120,表明了控制方法的有效性.   相似文献   

18.
针对智能车横纵向控制中路径跟踪精度、行驶稳定性以及乘坐舒适性等问题,提出了基于模型预测控制(MPC)的横纵向综合控制方法.速度规则系统根据参考路径曲率与车辆跟踪位移误差计算出期望速度曲线,速度跟踪控制采用分层式控制器,上层控制器利用MPC算法计算期望加速度,下层控制器利用车辆逆纵向动力学模型对车辆的驱动和制动进行协调控...  相似文献   

19.
基于波动负载发生装置的液压管路特性分析   总被引:1,自引:1,他引:0  
为研究汽车制动管路的液压传递特性,以流体力学理论为基础,建立了汽车制动系统液压管路的数学模型。在建模的过程中引入沿程压力损失和局部压力损失对管路压力的影响。建立了带有波动负载发生装置的制动系统AMESim仿真模型,通过改变电机转速的方式分析了制动液流速对管路特性的影响。利用波动负载发生装置试验台进行了台架试验,并在BOSCH-SDL26型汽车性能检测线上进行了波动负载发生装置的实车试验。试验结果验证了制动管路模型能够有效的体现制动管路的压力传递特性。  相似文献   

20.
依据C-NCAP中100%重叠正面冲击固定刚性壁障试验规定,应用HyperWorks软件建立某越野车车架正面碰撞仿真计算模型,并应用ANSYS/LS-DYNA软件进行求解计算。在此基础上,对某越野车车架进行耐撞性仿真研究,并从车架碰撞变形、碰撞加速度和碰撞速度等方面对仿真结果进行分析。结果表明,车架前部纵梁发生理想的纵向有序的褶皱变形,车架类S型梁的拐角部分发生弯曲变形,且碰撞加速度曲线和碰撞速度曲线并非理想,说明车架结构有改进空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号