首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The North Aegean Sea constitutes an important region of the Mediterranean Sea since in its eastern part the mesotrophic, low salinity and relatively cold water from the Black Sea (outflowing from the Dardanelles strait) meets the oligotrophic, warm and very saline water of Levantine origin, thus forming a thermohaline front. Mesozooplankton samples were collected at discrete layers according to the hydrology of the upper 100 m, during May 1997 and September 1998. In May highest biomass and abundance values (up to 66.82 mg m− 3 and 14,157 ind m− 3) were detected in the 10–20 m layer (within the halocline) of the stations positioned close to the Dardanelles strait. The front moved slightly southwards in September, characterized by high biomass and abundance values within the halocline layer. The areas moderately or non influenced by Black Sea water revealed lower standing stock values than the frontal area in both cruises and maxima were detected in the uppermost low salinity layer. Samples collected at the stations and/or layers more influenced by Black Sea water were distinguished from those collected at layers and/or stations more affected by Levantine waters in both periods. In May the former samples were characterized by the copepods Acartia clausi, Centropages typicus, Paracalanus parvus. The abundance of the above species decreased gradually with increasing salinity, in the horizontal and/or in the vertical dimension, with a parallel increase of the copepods Oithona plumifera, Oithona copepodites, Oncaea media, Ctenocalanus vanus, Farranula rostrata. During September the frontal area as well as that covered by the modified Black Sea water, were highly dominated by the cladoceran Penilia avirostris and doliolids. For both seasons, MDS plots, issued from the combination of mesozooplankton and water-type data, revealed the gradual differentiation of zooplankton composition from the frontal area towards the area covered by Levantine water, following the spreading and mixing of the Black sea water. The observed temporal and spatial variability in the distribution pattern of mesozooplankton standing stock and species composition seems to depend considerably on the variability of circulation and frontal flows.  相似文献   

2.
Data on hydrography, phyto- and zooplankton, obtained on a transect along the 0° meridian during the Winter Weddell Gyre Study, June 1992, revealed peculiarities of the early winter situation in the eastern Weddell Gyre. The vertical distribution and developmental stage composition of Rhincalanus gigas, Calanoides acutus, Calanus propinquus and krill, Euphausia superba larvae, were a good index for a general assessment of the seasonal condition of the plankton communities. There were five zones differing in seasonal situation: (1) The Polar Front and the southern ACC (not studied in detail), (2) The Weddell Front, (3) The Weddell Gyre interior, (4) The Maud Rise area, and (5) The Coastal Current zone. In the Weddell Front, the planktonic community resembled an autumnal situation with moderate phytoplankton biomass; the overwintering stock of copepods was not completely formed and the occurrence of calyptopes larvae of E. superba indicated that krill continued to reproduce until May. In the Weddell Gyre interior, a typical winter plankton community was found even before sea ice had formed. The specific hydrographic regime of the Maud Rise (governed by the mesoscale circulation over the seamount) support the late autumn conditions similar to the Weddell Front (but without early krill larvae). The plankton of the Coastal Current was a winter community. We conclude that in the eastern part of the Weddell Front (compared to the western part) seasonal development of both phytoplankton and herbivorous zooplankton is delayed in spring but prolonged in late autumn. Furthermore, it appears that the Weddell Sea ecosystem exhibits a much higher degree of spatial and temporal variability than thought before. This may have an impact on seasonal pattern of organic carbon transport from the pelagic realm to deeper water layers and to the sediment.  相似文献   

3.
Two hydrobiological transects across the East Greenland Shelf and the open waters of Fram Strait in summer were chosen to illustrate the distribution and production of phyto- and zooplankton in relation to water masses and ice cover. The parameters used were temperature and salinity, inorganic nutrients, chlorophyll a, primary production, phytoplankton species composition, abundance of the dominant herbivorous copepods Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa and egg production of C. finmarchicus and C. glacialis. Grazing impact of copepodites and adults of these four species was modelled for each station by using egg production rates as an index of growth. Seasonal development of plankton communities was closely associated with the extent of the ice cover, hydrographic conditions and the water masses typical of the different hydrographic domains. Four regions were identified from their biological activities and physical environment: The Northeast Water polynya on the East Greenland Shelf, with a springbloom of diatoms and active reproduction of herbivorous copepods. The pack ice region, dominated by small flagellates and negligible grazing activities. The marginal ice zone, with high variability and strong gradients of autotroph production related to eddies and ice tongues, an active microbial loop and low egg production. The open water, with high station-to-station variability of most of the parameters, probably related to hydrographic mesoscale activities. Here, Phaeocystis pouchetii was a prominent species in the phytoplankton communities. Its presence may at least partly be responsible for the generally low egg production in the open waters. Grazing impact on primary production was always small, due to low zooplankton biomass in the polynya and due to low ingestion in the remaining regions.  相似文献   

4.
During 2005–2008 species composition, abundance patterns, natural mortality rates and salinity effects on zooplankton were studied in the Bosphorus regions of the Black and Marmara Seas. The tendencies to diminish for abundance and biomass of the Black Sea originated zooplankton species and to increase for the proportion of their carcasses in the direction from the Black Sea toward the Marmara Sea were found. The mortality in the Black Sea species increased with depth in the Marmara Sea. The contribution of organic matter of carcasses of the Black Sea originated organisms to bacterial processes in the deep strata of the Marmara Sea was estimated. Different salinity and temperature regimes restrict mutual penetration of the species in these seas.  相似文献   

5.
The biological production characteristics of the Rhodes and western Ionian basins of the eastern Mediterranean are studied by a one-dimensional, coupled physical–biological model. The biological model involves single aggregated compartments of phytoplankton, zooplankton, detritus as well as ammonium and nitrate forms of the inorganic nitrogen. It interacts with the physical model through the vertical eddy diffusivity which is calculated using the Mellor–Yamada level 2.5 turbulence parameterization. The model simulations demonstrate the importance of the contrasting physical oceanographic characteristics of these two basins on affecting their yearly planktonic structures. The annual primary production in the Rhodes basin is estimated as 97 g C m2 yr−1 which is comparable with the northwestern Mediterranean. The western Ionian basin, on the contrary, possesses only 10% of the Rhodes' productivity and therefore represent a most oligotrophic site in the eastern Mediterranean. The Rhodes basin reveals a strong bloom in early spring, typically in March, a weaker bloom in early winter, typically in January, and a subsurface production below the seasonal thermocline during summer. This structure is slightly modified in the western Ionian basin, and the early winter and early spring blooms are merged to cover the entire winter. These results are supported favorably by the available observations both in their magnitudes and timing.  相似文献   

6.
The changes in the environmental features of the Yellow Sea during the last 25 years of the 20th century were studied using a set of seasonally monitored data along a transect (at 36°N) maintained by the State Oceanic Administration of China. The data included the ocean temperature (T), salinity (S) and biogenic elements, such as dissolved oxygen (DO), phosphorus (PO4-P), silicon (SiO3-Si) and dissolved inorganic nitrogen (DIN).The seasonal (summer and winter) values and the annual mean of these elements showed significant changes during the monitored period. Time series of T, S, DIN and N:P ratios exhibited positive trends, while those of DO, P and Si exhibited negative trends. During this period, the annual mean of T and DIN in the Yellow Sea increased by 1.7 °C and 2.95 μmol L−1, respectively, while those of DO, P and Si decreased by 59.1, 0.1 and 3.93 μmol L−1, respectively. In the 1980s, particularly in between 1985 and 1989, concentrations of P and Si dropped to near the ecological threshold for growth of diatoms. The N:P ratio increased from 4 in 1984 to over 16 in 2000. The climate trend coefficients, Rxt, for these time series are all above 0.43 with significance levels of 95%, except for salinity. The increases in T were consistent with the recent climate warming in northern China and the adjacent seas, i.e. the Bohai Sea and the East China Sea. The reduction of DO was probably attributable to the increase in T and decrease in primary production in these regions. The positive trend of DIN was mainly attributable to precipitation and partly to Changjiang River discharge. The negative concentration trends of P and Si were due to the decreases in their concentrations in seawater that flowed to the Yellow Sea from the Bohai Sea. As a result, N:P ratios greatly increased in the seawater of the Yellow Sea.Moreover, some important responses of the Yellow Sea ecosystems to the changes in physical variables and chemical biogenic elements were obviously displayed. These responses include strengthening nutrient limitation, decreasing chlorophyll a, primary production and phytoplankton abundance, succession of dominant phytoplankton species from diatoms to non-diatoms, changes in fish community structure and species diversity.  相似文献   

7.
High frequency sampling was performed in daylight hours along a 35 km transect in the Ligurian Sea to investigate the upper layer zooplankton distribution during the spring phytoplankton bloom. The results show detailed spatial structure and biomass of key zooplankton functional groups, copepods, salps and krill larvae, within the different water masses characterizing this region. Although observed values of total copepod biomass distribution were rather constant along the transect, species-specific patterns were observed in the copepod spatial distribution. The larger species Calanus helgolandicus, as well as Centropages typicus, Oithona spp., and Oncaea spp., were associated with the frontal zone. However, Acartia spp. had a scattered distribution, and Clausocalanus/Paracalanus did not have a clear pattern. In addition, krill larvae were concentrated in the frontal area and salps had a scattered pattern. The cross-shore zooplankton distribution appeared strongly influenced by both the Northern Ligurian current governing inshore waters, which acts as a major flushing forcing, and the Ligurian front, which governs offshore waters and may act as retention area for zooplankton.  相似文献   

8.
Dynamics of suprabenthos and zooplankton were analyzed in two areas located in the NW (off Sóller harbour) and S (off Cabrera Archipelago) of Mallorca (Balearic Islands, western Mediterranean) at depths ranging between 135–780 m. Four stations situated respectively at 150 m (shelf-slope break), and at bathyal depths of 350, 650 and 750 m were sampled at bi-monthly intervals during six cruises performed between August 2003 and June 2004. Suprabenthos showed maximum biomass in both areas from late spring to summer (April to August), while minimum biomass was found in autumn (September–November). Though variable, temporal dynamics of zooplankton showed peaks of biomass in late winter and summer (February and June), while minimals occurred in autumn (August–September) and, at bathyal depths, in April. Suprabenthos (abundance; MDS analyses) showed a sample aggregation as a function of depth (3 groups corresponding to the shelf-slope break, upper slope — over 350 m; and the middle, deeper part of the slope — over 650–750 m), without any separation of hauls by season. By contrast, zooplankton samples were separated by season and not by depth. There was evidence of three seasonal groups corresponding to summer (June 2004–August 2003), autumn–winter (September and November 2003, February 2004), and spring (April 2004), being especially well established off Sóller. In general, suprabenthos was significantly correlated with the sediment variables (e.g. total organic matter content (% OM), potential REDOX), whereas zooplankton was almost exclusively dependent on Chl a at the surface, which suggests two different food sources for suprabenthos and zooplankton. The increase of suprabenthos abundance in April–June was paralleled by a sharp increase (ca. 2.8 times) in the %OM on sediment during the same period, coupled ca. 1–2 months of delay with the peak of surface Chl a recorded in February–March (from satellite imagery data). Suprabenthos biomass was also correlated with salinity close to the bottom, suggesting a link between suprabenthos abundance and changes in the oceanographic condition of water masses close to the bottom. It is suggested that a higher suprabenthos biomass recorded off Sóller in comparison to that off Cabrera in June could, in turn, be related to a seasonal inflow of Levantine Intermediate Water (LIW) in April–June in this area at mid bathyal depths (350–650 m). This trend would be based on: 1) it was evident only at mid-slope depths between 350–750 m, coinciding with the LIW distribution, and 2) it was not recorded among zooplankton (collected throughout the water column). The possible effect of the fluctuations of suprabenthos and zooplankton on higher trophic levels has been explored studying the diet and food consumption rates of the red shrimp Aristeus antennatus, as indicator species by its dominance in bathyal communities. A. antennatus increased its food consumption from February to April–June 2004 off Sóller, which in the case of large (CL > 40 mm) specimens was found in both areas. In addition, there was a shift of diet from winter to spring–early summer. In this last period, A. antennatus preyed upon euphausiids and mesopelagic decapods and fish, while benthos (e.g. polychaetes and bivalves) decreased in the diet. This indicates an increase in the food consumption and probably in the caloric content of the diet in pre-spawning females in April–June 2004, which is synchronized with the period when gonad development begins in A. antennatus females (May–June). Anyway, macrozooplankton, and not suprabenthos, is crucial as a high energetic food source in the coupling between food intake and reproduction in the red shrimp.  相似文献   

9.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

10.
The role of copepods in the colonization and emigration processes of benthos and drift of an irrigation canal were studied. During the 3 first years of existence of the canal, fifteen species of copepods were recorded (1 diaptomid, 11 cyclopoids, 3 harpacticoids). Copepod succession in the canal was initially represented by lentic species, then by predatory species like Macrocyclops albidus that developed with the proliferation of filamentous algae and epibionts during the first two years. Primary consumers appeared from the beginning of the flowing conditions but started to dominate only from the third year. Smaller species associated with the bed sediments like the harpacticoid species Nitocra hibernica, were late colonizers. The latter as well as Paracyclops fimbriatus and Eucyclops serrulatus were the dominant copepod species in the canal. Total copepod density in the benthos ranged from 15,800 to 68,000 ind./m2, with a mean of 7.6% of the total zoobenthos. Copepods constituted up to 25% of the total faunal drift density, ranging from 50 to 140 ind./m3. Their highest abundance was observed around midnight. A three-fold increase of the discharge temporarily affected the drift density, but did not change the diel rhythm of the drift. Cyclopoid copepods namely P. fimbriatus (54.77%), copepodid cyclopoids (20.76%) and E. serrulatus (16.11%) formed the main part of the drift samples. The harpacticoid Nitocra hibernica was a minor participant in the drift processes.  相似文献   

11.
12.
Copepods were sampled by a multiple opening-closing net in the eastern Weddell Sea during various seasons (late winter/early spring, summer, autumn). Total copepod biomass integrated over the upper 1000 m varied seasonally between 1.7 mg C m−3 in late winter/early spring and 3.7 mg C m−3 in autumn. After the dark season the copepods were rather evenly distributed vertically and highest biomass levels were found in the mid-water layers between about 200 m and 500 m. By contrast, especially in summer but also in autumn copepod biomass concentrated in the uppermost water layer. A total of 64 calanoid species were identified in the upper 1000 m with maximum species numbers in the deepest layer. The large calanoids Calanus propinquus, Calanoides acutus, Metridia gerlachei, Euchaeta antarctica and the small calanoid Microcalanus pygmaeus prevailed and accounted for 60–70% of total copepod biomass, while the small poecilostomatoid Oncaea and the cyclopoid Oithona species comprised about 20%. Hence, the distribution pattern of the entire copepod biomass is strongly influenced by the life cycles of a few dominant species.  相似文献   

13.
《Journal of Marine Systems》2006,59(1-2):159-172
Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1−5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a.  相似文献   

14.
The characteristics and interannual variability of the deep water masses in the North and Central Aegean Sea are being investigated through the data sets of the Hellenic Navy Hydrographic Service (HNHS) and the MEDATLAS 1997 project. In the period between 1987 and 1993, the densest deep water in the Mediterranean has been produced in the Aegean Sea (with σθ densities reaching up to 29.6 kg/m3), contributing to what has been called the Eastern Mediterranean Transient. The examination of time series of mean integrated values of θ, S and σθ below the depth of 500 dbar reveals the significant deep water density increase after 1987 in all of the deep basins in the area. Data suggest that the density increase of 1987–1988 is mainly attributed to a temperature drop, while in 1993, an even more intense density increase is observed, characterized this time by an abrupt salinity increase. We assume that the increased salinity necessary to produce deep water masses with the observed characteristics was not locally produced but rather advected from the Levantine through the South Aegean. After 1993, no new deep water formation episodes have been observed. A series of ΘS diagrams derived from HNHS CTD casts covering the period between 1993 and 2000, depict the different characteristics of the deep water masses in the area. As 1993 marks the end of the formation period, observed differences between basins in that year must be attributed to different deep water formation sites. Thereafter, the stagnating deep water in the North and Central Aegean basins has been slowly gaining buoyancy by losing salt and gaining heat. The rate at which this phenomenon takes place varies between different deep basins. It is suggested that these variations are linked to the different volumes of each basin as well as to the general circulation features of the Aegean Sea.  相似文献   

15.
The warm oceanic current Kuroshio and the continental shelf water of the East China Sea meet in the western North Pacific, north of Taiwan and form an upwelling when they converge. The intrusion of the Kuroshio westward over the East China Sea shelf thus results in complicated exchanges of waters between these two water masses. We studied the copepods in the plankton collection taken from an east–west transect crossing these waters in April 1995 when the intrusion of the Kuroshio over the East China Sea shelf was beginning to retreat. The taxonomy of copepods was carefully treated and erroneous species records reported in the literature were guarded against. We evaluated the copepod diversity, the association of copepod species, and the association of stations in these water masses.  相似文献   

16.
A new method to calculate the anthropogenic CO2 (ΔDICant) within the water column of the North Atlantic Ocean is presented. The method exploits the equilibrium chemistry of the carbonate system with reference to temperature, salinity and the partial pressure of atmospheric CO2 (pCO2,atm). ΔDICant is calculated with reference to the ventilation ages of water masses derived from tracer data and to the time history of pCO2,atm. The method is applied to data recorded during the WOCE program on the WHP A1/E transect in the North Atlantic Ocean, where we characterise six key water masses by their relationships of dissolved inorganic carbon (DIC) and apparent oxygen utilisation (AOU). The error in determining ΔDICant is reduced significantly by minimising the number of values referred to, especially by avoiding any use of remineralisation ratios of particulate organic matter. The distribution of ΔDICant shows highest values of up to 45 μmol kg−1 in the surface waters falling to 28–33 μmol kg−1 in the Irminger Sea west of the Mid-Atlantic Ridge. The eastern basin is imprinted by older water masses revealing decreasing values down to 10 μmol kg−1 ΔDICant in the Antarctic Bottom Water. These findings indicate the penetration of the whole water column of the North Atlantic Ocean by anthropogenic CO2.  相似文献   

17.
The potential for carbon export and the role of siliceous plankton in the cycling of C and N was assessed in natural plankton assemblages in the Santa Barbara Basin, California, by examining uptake rates of inorganic carbon, nitrate and silicic acid. In April–August 1997, the concentrations of chlorophyll a, particulate organic carbon, particulate organic nitrogen and biogenic silica were measured twice monthly, and results revealed the occurrence of at least three blooms, the largest in June. Particulate elemental ratios of C, N and Si were similar to ratios of nutrient-replete diatoms, suggesting that they dominated this bloom. Mean integrated rates of carbon, nitrate and silicon uptake during the 4-month study period are similar to other productive coastal and upwelling regions (103, 8.3 and 13 mmol m−2 day−1, respectively). New production rates were twice as high as previously reported in this region and indicate that high rates of new production along eastern boundary currents are not confined to the major coastal upwelling regions. C/NO3, Si/NO3 and Si/C uptake ratios varied widely, and mean integrated ratios were 14±5.4, 1.6±1.0 and 0.12±0.07 (S.D.), respectively. That mean C/NO3 uptake ratio corresponds to an f-ratio of about 0.5 indicating a large potential for particulate export. Based on the average Si/NO3 and Si/C uptake ratios, diatoms could perform all of the primary production and nitrate uptake that occurred during the study; these rates also suggest that export is controlled by diatoms in this system. The mean Si/C biomass ratio was lower than the mean Si/C uptake ratio, consistent with the preferential export of Si relative to C observed in sediment traps in the basin. The study took place during a period of surface-water warming, with nitrate and silicic acid concentrations decreasing throughout the onset of the 1997–1998 El Niño conditions. Although diatoms contributed less to particulate biomass during the low nutrient conditions, high f-ratios (0.33–0.66) were maintained.  相似文献   

18.
The groundwater fauna, of which scarcely anything has previously been studied in formerly glaciated areas, was richest close to the water table and diminished markedly at greater depths. However, few individuals were generally recorded per 1 m3 of water. Bryocamptus minutus was the most abundant species of copepod at an esker site, the other species recorded beingAttheyella crassa, Bryocamptus pygmaeus, Moraria brevipes and Parastenocaris phyllura, and some species from the genus Diacyclops. At a shore bank infiltration site M. brevipes was the most numerous species. However, one esker site examined did not have any animals. Springs, which were grouped into those in a natural state and those under anthropogenic influence, had some species in common with esker groundwater, but also Paracyclops fimbriatus, Acanthocyclops robustus, Acanthocyclops vernalis, Diacyclops bicuspidatus, Megacyclops viridis, and the harpacticoid species Bryocamptus cuspidatus, Bryocamptus echinatus and Canthocamptus staphylinus. Of the spring copepods, P. fimbriatus appeared to withstand the influence of road de-icing with NaCl, but numbers of Moraria brevipes were reduced under this influence. Bryocamptus echinatus was more numerous in springs having a high oxygen content and high pH. The species found in esker groundwaters and springs were in part the same evidently cold-stenotherm species which inhabit the profundal zone of oligotrophic lakes.  相似文献   

19.
The objective of the present study was to verify possible spatial, seasonal, and inter-annual changes in the zooplankton off Paita (northern Peru), an upwelling area located closely to the limits of cold Humboldt Current and warm Equatorial Surface Waters. Zooplankton was sampled at subsurface on 53 occasions from August 1994 to December 2004 at four stations located 2 to 30 km offshore with a WP-2 net (300 µm). Extremely high surface water temperatures combined with low salinities were observed during the 1997/98 El Niño up to 29.0 °C) and in April 2002 (up to 25.0 °C). Temperatures more than 2 °C above monthly average were also observed in October 1994, in April 2000, and in November 2004. Significant trends were observed for oxygen concentration (increase) and several horizontal and vertical gradients. Among the copepods (72% of all individuals), the most abundant species were Paracalanus parvus (28%), Acartia tonsa (26%), and Calanus sp. (10%). The strong 1997–98 El Niño (EN) event led to drastic changes in species composition that were reversed during the 1998–99 La Niña (LN) event. Community parameters such as total abundance, diversity, equitability and species richness displayed marked variations associated with the 1997–98 EN and long-term trends. Long-term trends were significant for several vertical and horizontal temperature and oxygen gradients, indicating an increase in upwelling intensity at the shelf during the study period. 10-year-trends were also significant for total zooplankton abundance (increase) and community evenness (J, decline). Our data confirmed the importance of the weak EN in 2002/03 for the study region. Within the trend of increasing zooplankton abundance, a sharp step or shift was observed from 1999 to 2000. When using sequential t-tests to detect shifts in (x + 1) transformed abundance data, a significant rupture was found between the last sampling in 1999 and the first sampling in 2000. Also, a substantial decrease in diel variability occurred after 1999, probably due to changes in vertical migration patterns. The considerable increase in zooplankton abundance over the study period, the ENSO effect, and the 1999–2000 transition are discussed with regard to synchronicity with other zooplankton time series. The present study contributes with the first evidence from an important area located in the Humboldt Current for synchronous trends and changes that were previously observed elsewhere in the Pacific. Our results demonstrated the importance of long-term zooplankton monitoring studies in upwelling areas, and confirms the idea of dramatic changes in pelagic ecosystem structure occurring in the East Pacific.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号