首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
渐开线是由发生线沿着基圆纯滚动而形成的,渐开线齿轮在啮合过程中,轮齿间存在相对滑动,滑动速度在节线附近最小,并沿着节线分别向齿根和齿顶方向逐渐变大.轮齿间的相对滑动速度有利于油膜的形成,可以防止出现点蚀等失效现象,进而影响到轮齿的接触疲劳强度,但相对滑动又带来了摩擦磨损,是齿轮失效的主要形式之一.针对轮齿之间的相对滑动,分析标准直齿圆柱齿轮轮齿间的滑动速度,并得到数值计算公式,同时根据滑动速度的方向解释了轮齿啮合中摩擦力的方向,并用Matlab进行了仿真,为齿轮设计提供一定的参考.  相似文献   

2.
针对机车齿轮传动系统的参数振动问题,建立了考虑齿面摩擦时机车齿轮传动系统的动力学模型,基于势能原理获得了齿轮时变啮合刚度,并利用傅里叶级数展开,利用多尺度法进行求解,获得了系统参数振动稳定的边界条件。最后开展实例分析,研究了齿面摩擦因数对机车齿轮传动系统参数振动稳定性的影响。分析结果表明:不计齿面摩擦时,当机车速度约为119.02/j km·h~(-1)(j是谐波项)时,系统会产生参数共振,摩擦因数越大,对应的参数共振速度越大;在参数共振速度附近存在系统振动不稳定区域,当系统阻尼系数和摩擦因数均为0,谐波项分别为1、2、3、4时,相对于参数共振速度的波动值分别为9.16、1.46、0.53、0.55km·h~(-1),系统振动不稳定;当阻尼系数为0时,在对应谐波项下,与摩擦因数为0时相比,齿面摩擦因数分别为0.1、0.2时,系统振动不稳定区域内相对于参数共振速度的波动值分别增加了约4.88%、9.54%;当阻尼系数为0.01时,随着摩擦因数的增大,在系统振动不稳定区域内相对于参数共振速度的波动值不一定增加;摩擦因数越大,系统稳定所需的阻尼系数越小。  相似文献   

3.
为了准确获得弹流润滑下摆动活齿传动的摩擦功率损失,根据摆动活齿传动的啮合原理,探讨了弹流润滑状态下,活齿与内齿圈之间滑动摩擦因数的计算方法,分析了传动过程中滑动摩擦因数的时变规律.在对活齿与内齿圈间的接触正压力和相对速度进行计算的基础上,建立了弹流润滑下,摆动活齿传动在一个啮合周期内不同啮合点处的瞬时滑动摩擦功率损失的计算模型.应用最小二乘法拟合了啮合周期内的瞬时滑动摩擦功率损失函数,通过对其进行积分运算导出了平均滑动摩擦功率损失的计算公式.实例计算表明:本文提出的摆动活齿传动啮合过程摩擦功耗的计算模型是可行的,当活齿与内齿圈在齿廓曲线拐点处啮合时,瞬时滑动摩擦功率损失最大,其值为118.4 W.   相似文献   

4.
利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律.研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到...  相似文献   

5.
采用有限元法建立了M50钢滑滚摩擦副的弹塑性接触模型,在接触应力约为4.0GPa、线速度约为50m·s-1的高速重载工况下,分析了其等效应力、剪切应力场与表层塑性变形,研究了摩擦因数与相对滑动速度对M50钢滑滚摩擦副接触行为的影响,并对比了M50钢双滚子滑滚试验中的表层塑性变形。计算结果表明:M50钢摩擦副的最大接触应力和椭圆接触区长、短轴长度的有限元分析结果与Hertz理论计算结果的偏差分别为2.66%、0.26%、6.43%;当摩擦因数由0.1增加到0.5时,最大等效应力的位置由摩擦副次表层约0.5mm处逐渐向接触表面发展;摩擦副表面发生胶合失效时的摩擦因数大于0.3,接触表面最大等效应力大于1 700 MPa;胶合失效发生时,M50钢摩擦副的应力和塑性应变具有特定的方向性,表现在滑滚比分别为0.12、0.15条件下,接触点处线速度较高的表面最大等效应力分别达到2 847、2 689 MPa,产生较大的塑性应变,最大值分别达到0.062、0.061,而线速度较低的表面最大等效应力分别为2 269、2 101 MPa,产生的最大塑性变形相对较小,分别为0.040、0.039。  相似文献   

6.
运用ABAQUS软件建立了桩网结构低路基动力有限元模型,通过计算结果与实测结果的对比验证了模型的可靠性,并分析了列车荷载下路基中动应力分布、桩土应力比与等沉面高度变化特征。分析结果表明:采用模型计算的路基不同深度处动应力与实测结果最大差值为0.56kPa,动位移的最大差值为7μm,计算和实测的平均动应力和动位移沿路基深度的传递趋势相同,因此,有限元模型可靠;在动荷载作用下,路基中存在土拱效应,土拱高度约为1.6m,与静荷载作用下土拱高度近似,路基表面的应力变化率比路基基底大;路基中动应力的分布受到土拱效应的影响,表现为传递到桩间土上方土体的动应力部分转移至桩顶上方,且在路基垫层附近动应力转移现象最明显;在动荷载作用后,路基中心处桩顶与两桩间的桩土应力比减小,而桩顶与四桩间的桩土应力比增大,桩顶与两桩间的桩土应力比始终大于桩顶与四桩间的桩土应力比;距离路基中心1m处纵断面等沉面高度为1.55m,布置桩体的纵断面等沉面高度大于未布置桩体的纵断面等沉面高度,且沿路基中心到路肩,同类纵断面的等沉面高度逐渐降低,动荷载作用后,路基中心处等沉面高度增大。  相似文献   

7.
不同加载方式的斜齿轮接触分析   总被引:2,自引:1,他引:1  
以一对相互啮合的渐开线斜齿轮为研究对象,通过APDL语言生成参数化几何模型,研究映射网格划分方式并建立了斜齿轮接触的有限元模型,基于非线性接触算法在不同加载方式下对齿轮啮合齿面的接触应力进行了分析,将仿真与赫兹计算结果进行了比较,讨论了不同加载方式对接触应力的影响.  相似文献   

8.
建立了包含时变啮合刚度、综合啮合误差和齿侧间隙等在内的齿轮传动系统非线性动力学模型.对模型进行了无量纲化处理,基于数值仿真,主要分析了时变啮合刚度和综合啮合误差对系统周期特性的影响.结果表明时变啮合刚度和综合啮合误差的改变使得系统的周期运动形式呈现多样化,随着参数值增大,系统的周期运动特性变得相对复杂.  相似文献   

9.
在役桥梁基桩的长度和完整性检测是桩基检测中的难题。与常规反射波法相比,旁孔透射波法信号强、受到的干扰少,具有良好的应用前景。本文通过建立三维有限元模型,采用旁孔透射波法对在役桥梁基桩的长度进行了模拟分析。通过不同深度处的首至波走时,研究了激振方向、激振距离和旁孔距对首至波时深曲线的影响;通过对首至波时深曲线进行分段线性拟合,探讨了3种计算桩底深度方法的合理性。结果表明:激振方向、激振距离对桩底计算深度的影响不大,而旁孔距对桩底计算深度的影响较大。当旁孔距较小时,应采用平移法计算桩长;当旁孔距较大时,采用校正法计算桩长更为合理。  相似文献   

10.
为提高轮轨滑动接触热响应分析的准确性,基于Johnson-Cook材料模型,充分考虑含摩擦因数在内多种材料属性的温度相关性、3种热传递方式和轮轨实际廓形,建立了全比例三维弹塑性轮轨滑动接触有限元模型,采用完全耦合法对滑动接触状态下的轮轨进行热机耦合分析;研究了车轮以1 m·s-1速度沿钢轨滑行0.1 s时的轮轨温度场和应力场分布特性,分析了轴重、相对滑动速度对轮轨接触区温度场的影响,得到了热影响层深度、热影响层宽度、轮轨表层温度随轴重、相对滑动速度的变化关系。分析结果表明:轮轨最大等效应力发生在次表层接触斑中心处,车轮表层最高温度发生在接触斑后半部分中心处,车轮表层最高温度为848 ℃,钢轨表层最高温度为768 ℃,钢轨表层最高温度低于车轮表层最高温度;轮轨热影响层很薄,车轮热影响层深度约为4.22 mm,钢轨热影响层深度约为3 mm;轮轨热影响层深度随轴重增大无明显变化,而宽度随轴重的增大而增大,轮轨热影响层深度随相对滑动速度的增大而减小,而宽度随相对滑动速度增大无明显变化,轮轨表层温度随轴重和相对滑动速度的增大而增大,且相对滑动速度对轮轨热响应影响更大。全比例三维弹塑性轮轨滑动接触有限元模型及热机完全耦合法能够更加准确地预测轮轨滑动接触热响应,对合理开展轮轨热损伤和热疲劳研究具有重要意义。   相似文献   

11.
建立了250 km/h高速综合检测车车体结构,包括车底BTM吊装座的有限元模型,利用轨道车辆随机振动及应力高效算法程序,采用德国高速低干扰谱作为激励载荷,进行整车包括BTM吊装座随机应力分析.随着速度的增加,车体最大值点的应力标准差也随之增加,最大值为0.545 2 MPa,出现在1Hz处、7 Hz处也出现第二峰值,车下吊装座BTM的应力标准差也随之增大最大值7.419 1 MPa变化达35.9%.  相似文献   

12.
基于ANSYS显式动力分析建立了三维瞬态轮轨接触力-热耦合有限元模型,考虑了温度对热-弹塑性材料参数的影响;以初始温度30℃、轴重16 t、初始速度300 km·h-1、滑滚比30%工况为例,研究了车轮在经过钢轨典型断面前、中、后3个时刻下钢轨踏面的接触压力、有效塑性应变、温度分布及其变化特征;在此基础上,进一步分析了列车轴重、钢轨踏面状态、列车牵引和制动状态对钢轨踏面最大温升与最大接触压力的影响,并基于钢轨马氏体白蚀层的形成机制讨论了钢轨擦伤的形成机理。研究结果表明:在本文计算工况下,钢轨踏面最大接触压力为1 186.43 MPa,出现在接触区中心位置,车轮通过后钢轨内部存在部分残余热应力和机械应力,钢轨最大有效塑性应变为0.028 2,最大温升为554.55℃;随着列车轴重从12 t增大至16 t,钢轨最大温升由339.89℃增大至402.79℃;钢轨踏面摩擦因数由0.2增大至0.6时,钢轨最大温升由230.93℃增大至519.25℃;滑滚比由10%增大至40%时,车轮制动和牵引引起的钢轨最大温升分别由264.52℃和362.10℃增大至700.46℃和819...  相似文献   

13.
通过有限元方法分析齿轮产生裂纹和断裂及销轨磨损的原因,并分别研究了直弧形和弧形优化后的齿轮齿型面的优化效果.分析了这两种优化方案在高速重载情况下轮齿的接触情况及不同型面的接触区域在轮齿啮合过程中的变化规律.计算结果显示,各位置中轮齿上的最大应力均位于轮齿的边缘处,在较大的接触应力作用下,轮齿边缘会产生裂纹并不断扩大,最终导致轮齿的断裂.对齿轮边缘进行圆弧倒角,可以改变最大应力的位置,并且最大Mises应力可降低20%以上,从而解决齿轮的轮齿断裂问题.  相似文献   

14.
目的 了解股骨头颈部的力学分布以对临床股骨颈骨折治疗进行指导。方法 应用大型有限元分析软件ABAQUS建立人体股骨的三维有限元仿真模型 ,对该模型进行各种分析。结果 载荷的传导主要通过压力骨小梁和股骨距由股骨颈区传至股骨干的中下 1 /3处 ;当外界暴力作用时 ,应力主要集中在股骨上段 ,即股骨颈中下段和大小转子处及其之间。结论 股骨颈处的压力骨小梁和股骨距是重要的承载结构 ,内固定物的放置应循压力骨小梁方向尽量紧贴股骨距钻入 ;外展肌力的收缩对髋关节有一定的保护作用。  相似文献   

15.
为了准确表达参数激励下高速列车齿轮系统振动的稳定性,利用有限元方法得到高速列车齿轮系统时变啮合刚度,并用傅里叶级数展开进行拟合.考虑齿轮啮合误差,建立了高速列车齿轮传动系统扭转振动模型.结合多尺度近似解析方法,推导了参激振动下高速列车齿轮系统的近似解析解,得到了系统的稳定性边界曲线,并分析了影响齿轮传动系统稳定性的相关因素.研究结果表明:齿轮系统的不稳定性区域随着列车运行的速度降低总体呈减小趋势,但是在发生参数共振速度处存在明显不稳定区域;增大阻尼有利于系统的稳定性,当阻尼系数从0.01增加到0.05时,处于稳定区域的刚度波动幅值从5%增加至20%;增加齿轮的重合度可以减小啮合刚度的谐波特性,从而增强系统的稳定性.   相似文献   

16.
为预测高速磁浮列车引起的地面振动响应及其衰减规律,建立了高速磁浮车桥相互作用模型和磁浮线路桩基基础有限元模型,将磁浮车桥系统动力学仿真获得的车辆动态荷载输入基础有限元模型,计算了高速磁浮车辆引起的地面振动响应.计算结果表明:磁浮车辆引起地面振动响应的衰减规律与轮轨交通车辆的衰减规律基本一致,但在距离线路中心25 m左右没有反弹区;行车速度对磁浮线路地面振动的影响较大,当时速由125 km/h提高到430 km/h时,相同观察点处地面振动级增大约10 dB.  相似文献   

17.
为研究不同条件下架空线路耐张线夹温度分布情况,构建了基于耐张线夹简化结构的有限元模型,并在600 A工频交流电流和不同接触电阻比的条件下,进行了耐张线夹电磁-热耦合有限元仿真,最终得到耐张线夹的三维温度场分布. 仿真结果显示:在正常情况下,耐张线夹引流板处的温度最低;在线夹不同部位接触电阻增大的情况下,引流板处接触电阻的增大对线夹整体温度升高的影响最大,而线夹本体压接处接触电阻的增大对线夹温升影响最小,同时线夹温度升高也会制约架空线路导线载流量. 最后通过线夹电阻测量试验和温升试验验证仿真的准确性,误差约为2.3%.   相似文献   

18.
从运动学原理入手建立飞机着陆滑行力学模型, 引入道面摩阻不平衡度, 基于实测道面摩擦因数及其摩阻不平衡度分析飞机着陆减速和匀速滑行阶段的偏航角与偏航距离的变化趋势, 并设计模型试验分析湿滑道面摩阻不平衡下飞机着陆滑行参数变化规律。研究结果表明: 当跑道中心线两侧摩阻不平衡时, 机体产生绕竖轴扭矩, 导致飞机产生偏航角和偏航距离; 摩阻不平衡度的增大导致飞机偏航角与偏航距离增大, 摩阻不平衡度由0.03增加到0.38时, 偏航角增大4倍, 偏航距离增大1倍; 减小中心线两侧的摩阻不平衡度可以有效降低飞机偏出跑道概率; 滑移率对偏航角和偏航距离影响较小; 道面摩擦因数降低, 减速滑行距离增大, 基本呈线性变化; 随着跑道接地带摩阻不平衡度增大, 飞机所产生的偏航角呈直线增长, 当摩阻不平衡度达0.165时, 偏航角达1.2°; 随着跑道接地带摩阻不平衡度增大, 偏航距离也增大, 由于减速段所产生的偏航角, 加之匀速段滑行距离较长, 70%以上的偏航距离是在匀速阶段发生的; 湿滑道面下随着中心线两侧的水膜厚度差增大, 偏航角和偏航距离均增大, 水膜厚度差从0.05mm增加到2.50mm, 偏航角增大6倍, 偏航距离增大5倍。可见, 在接地带保证飞机主起落架两侧摩阻平衡, 有利于着陆减速过程飞机偏航角的控制。   相似文献   

19.
根据轮轨系统坐标系间的变换关系,在准静态条件下建立了轮轨接触斑三维受力分析模型,推导了考虑轮对摇头角与轮轨蠕滑力的三维脱轨系数计算公式,得到了脱轨临界状态时三维脱轨系数临界值的计算方法;以LMA车轮踏面与CHN60钢轨廓形为例,分析了轮对摇头角与摩擦因数对三维脱轨系数临界值的影响规律,并与Nadal脱轨系数临界值进行了对比;为简化三维脱轨系数的计算方法,根据Shen-Hedrick-Elkins蠕滑模型讨论了不同轮对摇头角、摩擦因数与垂向力条件下Kalker线性合成蠕滑力与3倍库伦摩擦力间的比值关系;分析了横向蠕滑力与纵向蠕滑力的比值随轮对摇头角与摩擦因数的变化规律,提出了一种准静态条件的三维脱轨系数简化计算方法,并与精确公式计算结果进行了对比。分析结果表明:与三维脱轨系数临界值相比,当轮对摇头角在1.5°以内时,纵向蠕滑力在切向力中的占比要明显大于横向蠕滑力,造成Nadal脱轨系数临界值具有一定的保守性,但在轮对摇头角较大时,横向蠕滑力在切向力中的占比达到了90%以上,Nadal与三维脱轨系数临界值计算结果基本相同;车轮脱轨临界状态下轮轨接触斑内已达到纯滑动状态,横向蠕滑力和纵向蠕滑力的比值基本不受摩擦因数影响,并与轮对摇头角存在强线性关系;与精确公式相比,三维脱轨系数简化计算方法的误差在±5%以内,可以满足工程应用的要求。  相似文献   

20.
为解决圆锥面组合特征曲面喷枪轨迹优化时涂层均匀性较差的问题,根据圆锥面的几何特点,给出了 圆锥面上的喷枪轨迹生成方法.基于喷枪3D模型在圆锥面上的喷枪轨迹优化方法,讨论了圆锥面组合时面片交 界处的喷涂轨迹优化方法,建立优化目标函数,并优化了相关的喷枪参数.仿真结果表明:优化后的涂层厚度满 足涂层质量要求;与一般方法相比,其涂层厚度最大值、最小值与理想值间的误差分别降低0.4和1.0m;同向 面片组合时的涂层厚度最大值、最小值与理想值间的误差比反向时的误差分别降低0.8和1.4m.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号