首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对四轮独立驱动汽车在转向和变速行驶中各车轮输出转矩和功率变化规律问题,建立自然坐标系下的整车动力学模型,考虑车辆转向时的轴荷转移,并在Matlab/Simulink环境下对低速行驶的工况进行仿真。结果表明,在低速转向和变速工况行驶中,各轮的输出转矩和功率有所不同,但与理论变化趋势相吻合,进一步为各轮转矩控制策略的研究奠定基础。  相似文献   

2.
The integrated longitudinal and lateral dynamic motion control is important for four wheel independent drive (4WID) electric vehicles. Under critical driving conditions, direct yaw moment control (DYC) has been proved as effective for vehicle handling stability and maneuverability by implementing optimized torque distribution of each wheel, especially with independent wheel drive electric vehicles. The intended vehicle path upon driver steering input is heavily depending on the instantaneous vehicle speed, body side slip and yaw rate of a vehicle, which can directly affect the steering effort of driver. In this paper, we propose a dynamic curvature controller (DCC) by applying a the dynamic curvature of the path, derived from vehicle dynamic state variables; yaw rate, side slip angle, and speed of a vehicle. The proposed controller, combined with DYC and wheel longitudinal slip control, is to utilize the dynamic curvature as a target control parameter for a feedback, avoiding estimating the vehicle side-slip angle. The effectiveness of the proposed controller, in view of stability and improved handling, has been validated with numerical simulations and a series of experiments during cornering engaging a disturbance torque driven by two rear independent in-wheel motors of a 4WD micro electric vehicle.  相似文献   

3.
首先介绍了目前车辆动力学稳定性控制的研究现状.提出了基于联合仿真平台进行控制仿真研究的新思路;其次详细分析了车辆动力学稳定性控制的原理。应用直接横摆力矩状态反馈控制策略,基于ADAMS/Car和Matlab/simulink的联合仿真技术.采用阶跃转向和单移线仿真工况有效验证了该控制策略的正确性,提高车辆在危险工况下的稳定性和可控性,为实际设计车辆动力学稳定性控制系统提供了理论基础。  相似文献   

4.
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.  相似文献   

5.
6.
This article presents two design strategies for an active rear wheel steering control system. The first method is a standard design procedure based on the well-known single track model. The aim of the feedback loop is to track a reference yaw rate in order to improve the handling behaviour. Unfortunately, a reasonable specification of the reference yaw rate proves to be a nontrivial task. A second approach avoids this drawback. The structure of the controller is regarded as a virtual mass-spring-damper system with adjustable parameters. Due to the high abstraction level of this method, the controller parameters can be tuned intuitively. Experiments with a prototype vehicle illustrate the effectiveness of the two proposed methodologies.  相似文献   

7.
In this paper, the torque and power required by dual motors for electric tracked vehicle during dynamic steering maneuvers with different steering radiuses are analyzed. A steering coupling drive system composed of a new type of center steering motor, two Electromagnetic (EM) clutches, two planetary gear couplers, and two propulsion motors is proposed for the dual motors drive high speed electric tracked vehicle (2MHETV), which aims to improve its lateral stability. An average torque direct distribution control strategy based on steering coupling and an optimization-distribution-based close-loop control strategy are designed separately to control the driving torque or regenerative braking torque of two propulsion motors for vehicle stability enhancement. Then models of the 2MHETV and the proposed control strategy are established in Recudyn and Matlab/Simulink respectively to evaluate the lateral stability of dynamic steering for the 2MHETV with different steering radiuses on hard pavement.The simulation results show that the lateral stability of the 2MHETV can be significantly improved by the proposed optimization-distribution-based close-loop control strategy based on steering coupling system.  相似文献   

8.
In this paper, a novel direct yaw control method based on driver operation intention for stability control of a distributed drive electric vehicle is proposed. It was discovered that the vehicle loses its stability easily under an emergency steering alignment (EA) problem. An emergent control algorithm is proposed to improve vehicle stability under such a condition. A driver operation intention recognition module is developed to identify the driving conditions. When the vehicle enters into an EA condition, the module can quickly identify it and transfer the control method from normal direct yaw control to emergency control. Two control algorithms are designed. The emergency control algorithm is applied to an EA condition while the adaptive control algorithm is applied to other conditions except the EA condition. Both simulation results and real vehicle results show that: The driver module can accurately identify driving conditions based on driver operation intention. When the vehicle enters into EA condition, the emergent control algorithm can intervene quickly, and it has proven to outperform normal direct yaw control for better stabilization of vehicles.  相似文献   

9.
Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.  相似文献   

10.
驱动系统是电动汽车研制的关键技术之一,它直接决定电动汽车的性能。矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,达到直流电动机的控制效果。直接转矩控制,并不需要观测转子磁链,它基于定子磁场控制磁场定向以转距作为被控量,思路清晰,手段直接。本文根据电动机矢量控制及直接转矩控制理论,结合电动汽车的实际要求,对其的现状及优缺点进行了分析及说明,介绍了改进的控制措施及发展趋势。  相似文献   

11.
《JSAE Review》1999,20(4):453-458
Nonlinear control is applied to road vehicle handing dynamics, and performance is evaluated under conditions where road friction is uncertain and rapidly changing. This is in contrast to earlier control schemes which rely on prescribed or detailed estimation of road friction. Particular attention is devoted to the problem of adapting the reference signals to achieve effective and stable control.  相似文献   

12.
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.  相似文献   

13.
The electric vehicle with four direct-driven in-wheel motors is an over actuated system. A three-level control strategy of electronic stability control (ESC) is proposed to achieve optimal torque distribution for four in-wheel motors. The first level is a gain-scheduled linear quadratic regulator which is designed to generate the desired yaw moment command for ESC. Control allocation is the second level which is used to distribute the desired longitudinal tire forces according to the yaw moment command while satisfying the driver’s intent for acceleration and deceleration. The associated weighting matrix is designed using the work load ratio at each wheel to prevent saturating the tire. The third level is slip ratio control (SRC) which is employed at each wheel to generate the desired longitudinal tire force based on a combined-slip tire model. Simulation results show that the proposed method can enhance the ESC performance for the test maneuvers. Since the tire model is often unknown for practical implementation, the effectiveness of the SRC is studied using the sine with dwell test. It is found that the SRC is not crucial for achieving performance similar to the proposed method with SRC, if the slip ratio can be maintained in the stable region using traction control system/anti-lock braking system.  相似文献   

14.
In this paper, an optimal torque distribution approach is proposed for electric vehicle equipped with four independent wheel motors to improve vehicle handling and stability performance. A novel objective function is formulated which works in a multifunctional way by considering the interference among different performance indices: forces and moment errors at the centre of gravity of the vehicle, actuator control efforts and tyre workload usage. To adapt different driving conditions, a weighting factors tuning scheme is designed to adjust the relative weight of each performance in the objective function. The effectiveness of the proposed optimal torque distribution is evaluated by simulations with CarSim and Matlab/Simulink. The simulation results under different driving scenarios indicate that the proposed control strategy can effectively improve the vehicle handling and stability even in slippery road conditions.  相似文献   

15.
针对纯电动客车系统方案,分析了整车驱动控制策略,包括加速转矩控制、制动能量回馈、驻坡、怠速爬行等功能,以满足整车驾驶性能要求。  相似文献   

16.
A new methodology to design the vehicle GCC (global chassis control) nonlinear controller is developed in this paper. Firstly, to handle the nonlinear coupling between sprung and unsprung masses, the vehicle is treated as a mechanical system of two-rigid-bodies which has 6 DOF (degree of freedom), including longitudinal, lateral, yaw, vertical, roll and pitch dynamics. The system equation is built in the yaw frame based on Lagrange's method, and it has been proved that the derived system remains the important physical properties of the general mechanical system. Then the GCC design problem is formulated as the trajectory tracking problem for a cascade system, with a Lagrange's system interconnecting with a linear system. The nonlinear robust control design problem of this cascade interconnected system is divided into two H control problems with respect to the two sub-systems. The parameter uncertainties in the system are tackled by adaptive theory, while the external uncertainties and disturbances are dealt with the H control theory. And the passivity of the mechanical system is applied to construct the solution of nonlinear H control problem. Finally, the effectiveness of the proposed controller is validated by simulation results even during the emergency manoeuvre.  相似文献   

17.
利用ADAMS软件,建立整车模型。对整车进行操纵稳定性分析,包括稳态回转、角跃阶输入、低速与高速转向回正以及单移线试验。从而实现了虚拟样机技术的应用,仿真分析整车的操纵稳定性,也验证了模型建立的准确性。  相似文献   

18.
In this article, the problems of dynamics and stability for vehicle planar motion systems have been investigated. By introducing a so-called joint-point locus approach, equilibria of the system and their associated stability properties are given geometrically. With this method, it is discovered that the difference between the front and the rear steering angles plays a key role in vehicle system dynamics and that the topological structure of the phase portrait and the types of bifurcations are different from those published previously. In particular, the vehicle system could still be stabilized even when pushed to work in a certain severely nonlinear region, by applying extremely large steering angles. However, it is worth noticing that the attractive domain of the stable equilibrium is very narrow. These developments might prove to be important in active steering control design. Numerical experiments are carried out to illustrate the potentials of the proposed techniques.  相似文献   

19.
Nonlinear dynamics and stability analysis of vehicle plane motions   总被引:3,自引:0,他引:3  
In this article, the problems of dynamics and stability for vehicle planar motion systems have been investigated. By introducing a so-called joint-point locus approach, equilibria of the system and their associated stability properties are given geometrically. With this method, it is discovered that the difference between the front and the rear steering angles plays a key role in vehicle system dynamics and that the topological structure of the phase portrait and the types of bifurcations are different from those published previously. In particular, the vehicle system could still be stabilized even when pushed to work in a certain severely nonlinear region, by applying extremely large steering angles. However, it is worth noticing that the attractive domain of the stable equilibrium is very narrow. These developments might prove to be important in active steering control design. Numerical experiments are carried out to illustrate the potentials of the proposed techniques.  相似文献   

20.
The dynamics of vehicles with pneumatic tyres are well-known to be non-holonomic, nonlinear, and subject to state bounds in order to remain on defined roadways. As such, it can be challenging to apply many of the tools typically used to analyse nonlinear dynamics and synthesise control strategies. Furthermore, the use of traditional stability analyses is often insufficient for vehicle control design since adherence to the roadway geometry implies a constrained space that dictates stricter conditions on the states than provable stability. A two-state phase portrait approach has been used to analyse vehicle dynamics and provides an illustrative view of the state trajectories at constant speed. This paper extends the phase portrait to three states to represent the nonlinear vehicle dynamics with steering and longitudinal tyre force inputs and consideration of the longitudinal vehicle dynamics. The concept of a fixed point in the phase plane is extended to a stable curve and example controllers are examined and synthesised using the three-dimensional vector space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号