首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
哪吒大桥钢桁加劲梁跨中合龙方案分析   总被引:2,自引:1,他引:1  
哪吒大桥为双塔单跨钢桁加劲梁悬索桥,主梁架设采用缆索吊装法,由两端向跨中合龙,合龙段施工常会出现加劲梁上、下弦开口量不等的现象,造成合龙困难或无法进行.为顺利合龙,采用有限元法仿真模拟桥梁施工全过程,通过计算对比分析牵拉和压重2种合龙方案的可行性.计算结果表明:采用牵拉方案所需牵拉力为1 560 kN,对上弦牵拉位置的...  相似文献   

2.
珠海横琴二桥主桥为(100+400+100)m的三跨连续钢桁系杆拱桥,主跨采用先拱后梁方法,辅以吊索塔架系统进行主拱及主梁合龙施工。为提高合龙安全性和合龙精度,边跨钢桁拱架设时对起始节点G0、G1、G2进行预偏和预降,选择适当时机从边支点向中支点依次脱空各临时墩,然后回放边支点至边跨合龙时理论标高,进行边跨合龙;中跨钢桁拱架设时扣背索采用一次性等值张拉(扣塔预先适当设置了反方向的倾斜度),根据参数敏感性分析,选择适宜温度合龙并采用升降边支点作为首选合龙控制措施,并在边跨桥面和门式墩顶部加载抗倾覆配重;主拱合龙后,将边支点顶升至设计标高以下0.3m,采用无临时系杆的钢主梁架设技术,实现钢主梁合龙口端部节点位移的精细化调整。  相似文献   

3.
蒙华铁路洞庭湖特大桥主桥为(98+140+406+406+140+98)m三塔双索面钢梁斜拉桥。主梁为钢箱钢桁结合梁,钢箱梁处于结合梁的下部,主桁下弦和钢箱顶板焊接连接。边跨主梁采用顶推施工,中跨主梁采用悬拼施工,最后在跨中合龙,主梁架设采用"先箱梁后桁梁"的施工技术,为确保架设精度,采用钢梁架设专用加密控制网并精密联测设置基准点的方法;对加工误差累积管理以控制钢梁制造误差;以固定仪器、人员和点位的测量方式控制边跨顶推落梁精度;采用差分极坐标和闭合水准法精密控制钢箱梁拼装误差;采用差分三维坐标法控制钢桁梁转角和预留调整口轴向偏差。  相似文献   

4.
悬索桥在施工过程的结构刚度比较小,空气静力作用产生的非线性效应以及桥面主梁架设方法都将对悬索桥施工过程的颤振稳定性产生重要的影响。运用大跨度桥梁颤振分析的三维非线性方法,分析宜昌长江大桥采用不同主梁架设方法时的颤振稳定性变化趋势,并探讨静风效应和主梁架设方法对悬索桥施工过程颤振稳定性影响的程度、机理和规律。  相似文献   

5.
安庆长江铁路大桥主桥为主跨580m的双塔三索面连续钢桁梁斜拉桥,主桁采用空间三片桁架结构,桁高15.0m,节间长14.5m,主桁间距14.0m。主桥共设中跨、边跨2个合龙点,先合龙中跨,再合龙边跨。根据边跨合龙前的钢梁安装架设状态,对主桥边跨合龙特点进行详细分析,制定了各项合龙措施,通过合龙措施的敏感性分析,确定边跨合龙方案为起顶5号墩支座,回落7号墩支座。按照此合龙方案调整合龙口状态,使里程偏差≤2cm,轴线偏差≤1cm,竖向高程偏差≤3cm,顺利实现了边跨无应力合龙。  相似文献   

6.
武汉杨泗港长江大桥主桥为主跨1 700 m的单跨双层公路悬索桥,加劲梁采用全焊接钢桁梁结构,共49个节段,其中标准梁段长36 m、宽32.5 m、桁高10 m,重约1 010 t。加劲梁采用大节段制造、运输和架设总体思路施工。利用900 t液压提升式缆载吊机由跨中向两侧架设加劲梁,其中,无吊索区2个梁段采用单台缆载吊机"荡移法"架设,其余47个梁段均采用2台缆载吊机"抬吊"架设。加劲梁架设时,先利用2台缆载吊机架设跨中区域7个梁段,再利用4台缆载吊机对称架设剩余42个梁段,最后在塔柱两侧采用"预偏法"合龙。在加劲梁架设过程中,采用了"节段间临时连接+部分配重"的方案施工;并根据加劲梁架设顺序对航道布置进行了2个阶段的动态调整。  相似文献   

7.
湖北香溪长江公路大桥主桥为跨度531.2m的全推力中承式钢箱桁架拱桥,主拱采用斜拉扣挂法分节段悬臂架设,合龙方式为自然合龙。合龙前对主拱结构进行敏感性分析,得出合龙口线形对温度及前端扣锚索索力变化均较为敏感。合龙时通过扣锚索及水平对拉装置调整主拱悬臂端高程和横桥向偏位,并设置能够快速完成杆件锁定并能调整合龙焊缝宽度变化量的临时锁定装置,在夜间1个温度恒定期内完成了主桁的合龙锁定,保证了体系转换后结构的安全,实现了主拱的顺利合龙。  相似文献   

8.
介绍正在施工的高赞大桥的设计概况,该桥主跨为280 m的双塔单索面预应力混凝土斜拉桥,塔墩梁固结,边跨设辅助墩,主塔为六边菱形空心独柱式,主墩为双薄壁矩形柔性墩,主梁采用抗风性能优越的大悬臂单箱三室的准三角形断面。主桥采用综合调索法确定成桥状态恒载内力。在合龙后,为调整主梁根部及跨中内力进行了合龙后调索。除常规分析计算外,还做了全桥的施工及使用过程的块体单元仿真分析。  相似文献   

9.
大跨径悬索桥施工阶段尤其是施工初期的颤振稳定性是建设过程中面临的重要问题 ,它将受到主梁架设方法的重要影响。以宜昌长江大桥为工程背景 ,运用多模态颤振分析方法 ,分析了不同主梁架设方法下颤振临界风速的变化趋势。分析结果表明 :主梁采用非对称架设和从桥塔向跨中对称架设的方法可以有效地提高悬索桥在施工阶段尤其是施工初期的颤振稳定性  相似文献   

10.
南京大胜关长江大桥钢梁架设及关键技术   总被引:3,自引:1,他引:2  
京沪高速铁路南京大胜关长江大桥钢梁孔跨布置为2联(84+84) m连续钢桁梁和(108+192+336+336+192+108) m六跨连续钢桁拱.钢梁采用3片主桁结构,结构体系新,技术标准高,架设难度大.采用钢梁双悬臂架设、多点跨中合龙的技术.主跨钢梁采用双悬臂架设,主墩墩旁托架和钢梁临时固结,6号、8号主墩设吊索塔架,7号主墩钢梁设临时平索,钢梁先两侧192 m边跨合龙,再两孔336 m主跨合龙.介绍钢梁架设的关键技术和主要架设过程.  相似文献   

11.
悬索桥加颈梁架设阶段灰色控制系统的研究   总被引:1,自引:1,他引:0  
通过对悬索桥线型影响因素的分析,选定了加劲梁架设阶段的控制参数F1和FII,并建立了相应的灰色预测控制模型,在此基础上提出了结构状态的优调整方法,形成了加劲梁架阶段的控制系统。  相似文献   

12.
青海哇加滩黄河特大桥为主跨560m的双塔双索面钢-混组合梁斜拉桥,其主梁采用双悬臂拼装架设,并采用单节段拼装浇筑法施工。为提高主梁架设效率、缩短工期,提出一种优化方案——不增加斜拉索张拉次数的两节段拼装浇筑法。为指导施工,使成桥后内力和线形满足设计要求,采用有限元软件MIDAS Civil建立全桥模型,利用正装迭代法对优化方案进行全过程施工及合龙控制分析。结果表明:施工过程钢梁最大应力212.2 MPa,桥面板最大拉应力1.42MPa,斜拉索最小安全系数2.31,塔柱最大拉应力1.6MPa,均满足规范要求;主梁合龙精度控制在3mm内;成桥后索力偏差最大值6.8%,索力均匀,主桥线形误差均在±56mm内,桥梁线形平顺。  相似文献   

13.
连镇铁路五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁结构,加劲梁恒载集度大(819.1 kN/m)。其中,一期恒载集度达501 kN/m;铁路桥面和公路桥面二期恒载集度分别为233.4 kN/m和84.7 kN/m。针对该桥特点,加劲梁采用整节段吊装,架设时采用不携带铁路二期恒载的方案施工。边跨加劲梁节段利用浮吊整体吊装至滑移支架上,再滑移至设计位置,连接成整体;中跨加劲梁节段采用2台900 t缆载吊机自跨中向两侧桥塔方向架设,节段间上弦设牛腿式临时铰进行铰接,待中跨80%节段吊装后再进行刚接;中跨加劲梁架设后,对边跨加劲梁整体姿态进行调整,通过顶、落梁与中跨加劲梁合龙,合龙后铺设铁路二期恒载。  相似文献   

14.
边跨合龙施工在桥梁施工中属点睛之笔,其技术难度大、施工风险高,常规现浇段+合龙段的合龙方式本就施工不易,而南澳大桥主桥更是采用了在国内跨海矮塔斜拉桥施工中属于首次应用的边跨不设合龙段直接一次浇筑合龙工艺。本文通过介绍整个施工过程中的创新点、控制要点,以及实施效果,证明了依靠自主研发的设置模板体系滑动面这一新技术来实现该项工艺是成功有效的。  相似文献   

15.
悬索桥施工控制方法的研究   总被引:4,自引:3,他引:4  
在对国内外悬索桥施工控制技术现状分析的基础上,提出了采用灰色理论对悬索桥施工过程进行控制分析,并按主缆架设与加劲梁架设两阶段实施的新方法。  相似文献   

16.
介绍了南浦大桥T梁架设采用的双悬臂L型架桥设备的设计,试验及架梁情况。  相似文献   

17.
《中外公路》2021,41(3):122-125
悬索桥在主梁安装施工过程中,中、边跨主缆力持续变化,导致主索鞍需要频繁顶推调整位置,主索鞍顶推方案的优化是悬索桥主梁架设技术微革新的重要内容之一。该文以某跨长江悬索桥为工程背景,以索塔容许偏位作为控制参数,通过比较分析主索鞍不同顶推方案的差异,在容许偏位范围内确定了最优化的主索鞍顶推时机和顶推量,减少了主索鞍顶推对施工的影响,同时确保了施工过程中索塔的安全性和稳定性。  相似文献   

18.
贵广(南广)高铁北江特大桥主桥为(57.5+109.25+230+109.25+57.5)m的钢桁梁斜拉桥,钢桁梁采用2片三角形桁式结构。该桥主墩两侧钢桁梁节间利用架梁吊机对称架设安装,设1个合龙口(位于跨中)。针对该桥跨度大、合龙杆件多、安装精度要求高等难点,钢桁梁合龙前,进行钢桁梁姿态监测、高程控制等准备工作。根据合龙误差计算结果,进行合龙口处标高、转角、温度、轴线偏位、横向扭转、纵向位移等参数敏感性分析,确定采用调整配重和温度的方式进行合龙。结合合龙口的连续监测结果,确定钢桁梁通过配重后,在30℃的温度下,先合龙下弦,然后再上弦,最后合龙腹杆及横梁、纵梁的多点合龙方案。实践表明,桥梁合龙精度为±4mm,实现了钢桁梁的无应力合龙。  相似文献   

19.
山区悬索桥钢桁主梁施工研究   总被引:1,自引:0,他引:1  
矮寨特大桥为262+1 146+124 m的钢桁加劲梁单跨悬索桥,桥面设计标高与地面高差达330 m左右,山谷两侧悬崖距离在900~1 300 m之间变化,无法采用常规水中悬索桥主梁架设方案.该文介绍了大桥主梁利用多跨索道运梁机架设施工的方案,并对此方案进行了深入的理论研究.  相似文献   

20.
缅甸曼德勒大桥结构为刚性拱柔性梁,施工时先合龙边拱后合龙中拱。根据钢梁的结构、施工条件和自然环境特点,制定科学、经济、可靠的施工技术,在不施加外力的情况下,仅通过调整三向位移实现钢梁合龙的零误差。介绍该桥钢梁合龙技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号