首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对中国高速铁路CRTSⅡ型板式无砟轨道界面初始黏结缺陷导致轨道结构温度变形进一步增大的现象, 基于电荷耦合器件(CCD)工业相机与计算机图片处理技术, 建立了板式无砟轨道界面空隙率试验检测系统, 测试了3块CRTSⅡ型板式无砟轨道板与水泥沥青(CA)砂浆界面的初始空隙率; 在有限元模型中以界面空隙率定量表征了界面的黏结状态, 即根据界面空隙率检测结果, 考虑界面存在一定量值的初始空隙率, 并假设这些空隙均匀分布在整个界面上, 系统分析了界面初始黏结缺陷对板式无砟轨道温度变形的影响。研究结果表明: 3块轨道板样本界面的初始平均空隙率为22.3%, 界面四周的初始黏结状态明显差于轨道板界面中心; 在正、负竖向温度梯度作用下, CRTSⅡ型板式无砟轨道分别呈现中心上拱和四周翘曲的温度变形模式; 正温度梯度作用下轨道板最大温度变形与不考虑界面初始黏结缺陷相比增大了7.8%~10.1%, 且随着界面初始空隙率的进一步增大, 轨道板最大上拱温度变形呈线性增大趋势; 负温度梯度作用下, 界面空隙率的增大对轨道板温度变形的影响不大; 在分析CRTSⅡ型板式无砟轨道温度变形时应适当考虑轨道板与CA砂浆的界面初始黏结缺陷, 研究结果可为分析CRTSⅡ型轨道板上拱温度变形机理提供参考。   相似文献   

2.
为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.   相似文献   

3.
新建盘营客运专线是我国首条设计时速350 km的CRTSⅢ型板式无砟轨道客运专线。CRTSⅢ型板式无砟轨道板是在汲取了CRTSI型和CRTSⅡ型轨道板技术的基础上,通过技术创新所取得的成果。主要介绍时速350 km的CRTSⅢ型板式无砟轨道板预制工艺、检验方法及关键工序作业要点,对同类工程有借鉴意义。  相似文献   

4.
高速铁路CRTSⅡ型轨道板精调技术   总被引:1,自引:0,他引:1  
介绍京沪高速铁路CRTSⅡ型轨道板精调工艺流程,即在轨道基准点(GRP)上架设全站仪、固定定向棱镜,在承轨槽处放置测量标架,通过测量确定标架上每个棱镜存在的位差,进行轨道板调整。探讨轨道板精调施工技术,为今后提高CRTSⅡ型轨道板精调工艺和质量提供参考。  相似文献   

5.
根据长大隧道CRTSⅡ型板式无砟轨道的施工特点,以黄龙寺隧道无砟轨道施工工程为例,对CRTSⅡ型板式无砟轨道底座板、轨道板、灌板的施工技术及其物流组织进行了详细介绍,认为开发并采用小型轨道板压紧及封边工艺能提高物流效率,文中采用的施工技术可供同类工程施工参考。  相似文献   

6.
CRTSⅡ型无砟轨道板的质量是高铁安全运行的重要保证,对施工中预应力张拉的有效控制是保证轨道板施工质量的关键。结合CRTSII型无砟轨道板生产线具体结构形式及预应力损失机理,设计了预应力损失现场测试方案和预应力损失计算方法。实测结果表明CRTSⅡ型无砟轨道板生产线预应力损失不能忽略,应引起重视。  相似文献   

7.
为了研究复杂地形对桥上CRTS Ⅱ型轨道系统地震响应的影响, 以沪昆高速铁路线16~32 m简支梁桥为例, 考虑钢轨、扣件、轨道板、砂浆层、底座板、滑动层、桥梁、固结机构、端刺与挡块等部件, 建立了多跨简支梁桥-双线CRTS Ⅱ型轨道系统非线性动力学仿真模型, 研究了桥上CRTS Ⅱ型轨道系统纵向力分布特征; 设置了4种典型地形工况, 分析了不同墩高条件下桥上CRTS Ⅱ型轨道系统地震响应规律。分析结果表明: 与非纵连轨道结构相比, 桥上CRTS Ⅱ型轨道结构最大钢轨应力相对较小, 约为138.8 MPa, 应力包络曲线呈反对称, 线形平滑; 轨道板和底座板共同承受纵向力, 其最大值均出现在桥台附近, 最大拉应力分别达到25.2、27.1 MPa, 将在地震中发生开裂; 在地震中, 端刺承受着巨大的纵向力, 可达14~20 MN; 底座板与桥面之间相对位移超过24 mm, 对系统有隔震耗能作用; 地形对钢轨、轨道板和底座板纵向力的影响约为30%左右, 对墩底剪力影响较大, 在地形发生突变处, 墩底剪力增幅达4倍; 靠近桥台处的滑动层横向变形较大, 可达2.7 mm, 随着墩高增大, 扣件与滑动层纵横竖变形增大; 在地震作用下, 滑动层普遍存在着较大的竖向变形, 桥台附近滑动层竖向变形可达43.5 mm; 在地震中, 挡块与底座板之间存在着频繁的碰撞现象, 桥台附近挡块碰撞力可达38 MPa, 挡块将发生损坏。   相似文献   

8.
CRTSⅡ型无砟轨道板施工技术   总被引:1,自引:0,他引:1  
随着高速铁路的不断发展,无砟轨道为铁路的高速运行提供了保证,CRTSⅡ型无砟轨道板作为高速铁路的核心技术,具有施工工艺新、质量要求高、过程控制重要、验收复杂等特点。结合京沪高速铁路四标段现场施工的实践,介绍CRTSⅡ型无砟轨道板的施工技术与质量控制措施。  相似文献   

9.
CRTSⅠ型与CRTSⅡ型板式无砟轨道结构特点分析   总被引:6,自引:0,他引:6  
无砟轨道具有整体稳定性强、刚度均匀性好、线路平顺度高、耐久性强的突出优点,满足客运专线和高速铁路对轨道性能的要求,以板式无砟轨道为例,分别介绍了CRTSⅠ型板式无砟轨道与CRTSⅡ型板式无砟轨道的结构组成、板型分类、断面尺寸和对线下工程设计要求,对两种轨道系统的技术特点进行了分析,Ⅰ型轨道板比Ⅱ型轨道板制造简单、造价稍低,Ⅱ型板式无砟轨道比Ⅰ型板式无砟轨道几何精度高、结构整体性和纵向连续性好。  相似文献   

10.
轨道板的制造是高铁CRTSⅡ型无砟轨道系统技术的关键。混凝土配合比的确定是轨道板制造的关键。轨道预制板与传统混凝土制品存在较大差异,且在国内无成熟经验借鉴。目前国内的轨道板场处于消化吸收国外博格板经验和自己摸索的阶段。铁一院石武客专中心试验室会同中铁十一局武汉板场试验室通过大量的试验研究和探索,确定了较成熟的CRTSⅡ型无砟轨道轨道板预制用混凝土配合比(C55),并在生产中应用结果良好。  相似文献   

11.
针对路基上CRTSⅠ和CRTSⅡ型板式无砟轨道的结构特点, 分别建立了相应的有限元模型, 研究了路基不均匀沉降作用下不同板式无砟轨道受力与变形的传递规律及其影响。分析结果表明: 路基不均匀沉降发生后, 上部轨道结构的垂向变形具有一定跟随性, 变形与沉降曲线相近但不完全重合; 底座板伸缩缝的存在对轨道结构的受力和变形有较大影响, 在20 mm/20 m沉降条件下, CRTSⅠ、CRTSⅡ型板的垂向位移分别达沉降幅值的90%和60%, 相对CRTSⅠ型板而言, 沉降对CRTSⅡ型板的垂向位移影响较小, 但后者更易形成较大范围的离缝, 离缝长度达6.52 m, 为CRTSⅠ型板离缝长度的1.92倍; 当沉降幅值位于底座板中心时, 离缝主要集中在伸缩缝、沉降端部和沉降中心, 但当沉降幅值位于伸缩缝处时, 离缝主要集中在伸缩缝两侧和沉降端部; 沉降波长或幅值改变时, 会导致最大离缝位置出现偏移; 在路基不均匀沉降作用下, CRTSⅠ型板的底座板纵向最大拉应力均大于轨道板的纵向最大拉应力, 而CRTSⅡ型板的情形则相反; 从混凝土强度考虑, CRTSⅠ型板沉降控制标准应以底座板的拉应力控制为主, 而CRTSⅡ型板应以轨道板和底座板的拉应力综合控制。   相似文献   

12.
轨道板自动精调设备是对无砟轨道CRTSⅡ型、CRTSⅠ型轨道板的高程、水平位置进行精调作业的专用设备。主要介绍了GTJT-6型板式无砟轨道轨道板自动精调设备的结构组成、工作原理、特点及其主要配件选型。联调试验表明:此轨道板自动精调设备自动化程度高,能够大大提高轨道板精调作业的速度和精度,相邻轨道板承轨台顶面相对高差及平面位置允许偏差也完全满足相关标准要求,并且能够有效降低施工成本。  相似文献   

13.
CRTS Ⅱ型板断裂条件下桥上无缝线路伸缩力特性   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究桥上CRTSⅡ型轨道板断裂条件下轨道、桥梁结构纵向受力变形规律及其影响,基于有限元法和梁-板-轨相互作用机理,建立桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型,分析不同轨道板断缝位置、断缝宽度、裂缝深度及轨道板、底座板伸缩刚度对断板条件下桥上无砟轨道无缝线路伸缩力分布规律的影响. 研究结果表明:在计算轨道板断裂条件下桥上无砟轨道无缝线路伸缩力时,应根据不同检算部件选取最不利的断板位置,建议将轨道板断缝宽度和深度分别取2 mm和200 mm、轨道板、底座板伸缩刚度折减至10%~50%,计算结果是偏安全的且不失一般性;轨道板断裂增加了断缝处CA (cement asphalt)砂浆层及底座板断裂的风险,断板侧的钢轨纵向位移及轨板相对位移均在断缝处急剧变化.   相似文献   

14.
结合施工实践,从轨道板精调前作业准备、轨道板精调、轨道板和底座润湿、封边及排气孔设置、轨道板压紧、CA砂浆灌注等方面阐述了CRTSⅡ型轨道板精调和CA砂浆灌注施工技术。  相似文献   

15.
为了保证高速铁路CRTSⅡ型无砟轨道板高质量高精度的磨削加工,需要对其主体材料——水泥混凝土的磨削性能进行分析研究。首先介绍了CRTSⅡ型无砟轨道板的整体结构、加工精度及材料组成;然后提出选用并联模型作为混凝土结构的简化模型,计算出了骨料和基体的面积比率;最后通过与试验分析结果比对,可对理论结果进行适当修正。该研究结果为轨道板磨削力的研究奠定基础,最终将促进轨道板磨床的优化设计、丰富混凝土磨削加工理论。  相似文献   

16.
我国高速铁路中普遍应用了CRTSⅡ型板式无砟轨道,使用中发现CRTSⅡ型板式无砟轨道普遍存在底座板开裂和水泥乳化沥青砂浆填充层与轨道板间开裂现象,分析了产生原因并分别提出了处治措施。对于底座板裂缝大于0.3mm,建议采取扩槽、涂抹弹性树脂材料表面封闭处理;对于水泥乳化沥青砂浆填充层与轨道板间的开裂,建议使用专用的灌浆材料、采用低压注浆的原理对砂浆离缝进行整治。可为类似工程提供有益借鉴。  相似文献   

17.
简述了CRTS-Ⅱ型无砟轨道组成及钢筋混凝土底座板的结构构造,通过具体的施工实践,详细阐述了钢筋混凝土底座板中临时端刺的作用、组成及其主要施工技术,为CRTS—Ⅱ型无砟轨道板在我国高速铁路扩大应用提供了有益的参考。  相似文献   

18.
针对刚构桥上无砟轨道无缝线路的受力与变形进行研究,以梁-板-轨相互作用原理为基础,分别建立刚构桥上CRTSⅢ型板式和CRTSⅠ型双块式无砟轨道无缝线路空间耦合模型,计算伸缩、挠曲、制动、断轨工况下轨道结构和桥梁纵向力及位移,并对两种轨道结构静力特性进行对比分析,为刚构桥上无缝线路轨道结构设计提供参考。结果显示:在温度荷载、列车荷载作用下,采用CRTSⅠ型双块式轨道结构时钢轨纵向力更小,但轨板相对位移增幅明显,可能产生安全隐患;在列车制动荷载工况下,采用CRTSⅢ型板式轨道结构时钢轨纵向力与轨板相对位移均更小;在断轨工况下,采用CRTSⅠ型双块式轨道结构时断缝值超过了规范容许限值。建议在刚构桥上采用CRTSⅢ型板式无砟轨道。  相似文献   

19.
新建石家庄至武汉客运专线湖北段TJⅡ标采用CRTSⅡ型板式无砟轨道和CRTSⅠ型双块式无砟轨道。通过介绍CRTSⅠ双块式和CRTSⅡ板式无砟轨道右线线路参数的异同,提出CRTSⅡ型无砟轨道因没有单独设计右线竖曲线而产生的长轨精调阶段右线线路参数如何实现问题,分析解决方法及替代方案,可为以后的无砟轨道设计或施工提供参考。  相似文献   

20.
由于京广高速铁路某路基地段的CRTSⅡ型板式无砟轨道支承层施工未采用钢筋混凝土结构,联调联试过程中发现受温度变化、列车制动、起动及行车振动等的综合影响,可能会出现开裂病害现象。为确保高速铁路运营安全,决定将交界处的CRTSⅡ型板式无砟轨道C15素混凝土支承层变更为C40钢筋混凝土底座板,以加强CRTSⅡ型板端部底座,防止因轨道板温度力、制动力等纵向力导致CA砂浆层及底座开裂。详细介绍了处理方案和详细的施工工艺措施。支承层变更方案得到了成功应用,对运营中的类似高铁轨道系统病害整治具有很好的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号