首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the dissimilar scaling issues, the conventional experimental method of FOWTs can hardly be used directly to validate the full-scale global dynamic responses accurately. Therefore, it is of absolute necessity to find a more accurate, economic and efficient approach, which can be utilized to predict the full-scale global dynamic responses of FOWTs. In this paper, a literature review of experimental-numerical methodologies and challenges for FOWTs is made. Several key challenges in the conventional basin experiment issues are discussed, including scaling issues; coupling effects between aero-hydro and structural dynamic responses; blade pitch control strategies; experimental facilities and calibration methods. Several basin experiments, industrial projects and numerical codes are summarized to demonstrate the progress of hybrid experimental methods. Besides, time delay in hardware-in-the-loop challenges is concluded to emphasize their significant role in real-time hybrid approaches. It is of great use to comprehend these methodologies and challenges, which can help some future researchers to make a footstone for proposing a more efficient and functional hybrid basin experimental and numerical method.  相似文献   

2.
3.
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.  相似文献   

4.
5.
This paper focuses on the problem of control law optimization for marine vessels working in a dynamical positioning(DP) regime. The approach proposed here is based on the use of a special unified multipurpose control law structure constructed on the basis of nonlinear asymptotic observers, that allows the decoupling of a synthesis into simpler particular optimization problems. The primary reason for the observers is to restore deficient information concerning the unmeasured velocities of the vessel. Using a number of separate items in addition to the observers, it is possible to achieve desirable dynamical features of the closed loop connection. The most important feature is the so-called dynamical corrector, and this paper is therefore devoted to solving its optimal synthesis in marine vessels controlled by DP systems under the action of sea wave disturbances. The problem involves the need for minimal intensity of the control action determined by high frequency sea wave components. A specialized approach for designing the dynamical corrector is proposed and the applicability and effectiveness of the approach are illustrated using a practical example of underwater DP system synthesis.  相似文献   

6.
The existing maintenance strategies of offshore wind energy are reviewed including the specific aspects of condition-based maintenance, focusing on three primary phases, namely, condition monitoring, fault diagnosis and prognosis, and maintenance optimization. Relevant academic research and industrial applications are identified and summarized. The state of art, capabilities,and constraints of condition-based maintenance are analyzed. The presented research demonstrates that the intelligent-based approach has become a promising solution for condition recognition, and an integrated data platform for offshore wind farms is significant to optimize the maintenance activities.  相似文献   

7.
Current installation costs of offshore wind turbines(OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study(based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies(RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel(HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV(in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV(which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting(response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather-and water depth-sensitivity, this novel procedure is demonstrated to be viable.  相似文献   

8.
文章采用了空气动力、水动力、控制与弹性完全耦合的时域模拟方法研究了张力腿式浮式风机平台的动力响应。水动力载荷的计算采用了三维势流理论与Morison公式。空气动力载荷的计算采用了叶素动量理论和广义动态尾流理论。利用FAST软件得到了张力腿式浮式风机平台响应的时域结果,并分析了其动力响应特性。建立了描述平台纵荡运动的非线性微分方程,并采用了摄动方法求得其近似解,解释了纵荡运动中由非线性粘性效应引起的高频响应。对数值模拟结果的分析表明高频的响应分量对平台的动力性能有显著的影响。  相似文献   

9.
文章提出一种基于等效疲劳载荷的快速有效的结构优化设计方法,首先通过bladed模拟得到时域下的风载荷,然后通过雨流计数法则和等效损伤理论得到相应的疲劳载荷谱和等效疲劳载荷,接着以导管架式海上风机为例,利用ANSYS对其进行三维建模,选取三种典型管节点和两种非管节点,基于热点应力法计算了其在三种风疲劳载荷作用下的疲劳损伤,通过比较三种载荷作用下的疲劳损伤结果,验证了等效疲劳载荷的可靠性。接着又计算了各等效疲劳载荷分量单独作用下的海上风机焊接节点的疲劳损伤,得出各疲劳载荷分量对疲劳总损伤的贡献,可以为设计者提供更好的载荷设计依据。相比于传统的时域疲劳分析方法和疲劳载荷谱方法,等效疲劳载荷方法更加方便有效。  相似文献   

10.
11.
This research presents a review and classification of the published work related to applied risk analysis and risk management in the maritime liquefied natural gas(LNG) sector from 2000 to 2023. The papers are categorised under two primary contexts. The first is the risk analysis theory context which represents the classification with respect to(w. r. t.) the used risk analysis method, the used risk analysis tool, and the objective of risk analysis, whereas the second is the presented case in th...  相似文献   

12.
The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.  相似文献   

13.
The paper is partly a review on hydrodynamic and structural aspects of fish farms. In addition, new numerical results are presented on the stochastic behavior of bending stresses in the floater of a realistic net cage in extreme wave conditions. The behavior of traditional-type fish farms with net cages and closed fish farms in waves and currents is discussed. Hydroelasticity can play a significant role for net cages and closed membrane-type fish farms. The many meshes in a net cage make CFD and complete structural modeling impracticable. As an example, a hydrodynamic screen model and structural truss elements are instead used to represent the hydrodynamic loading and the structural deformation of the net. In addition, the wake inside the net due to current plays an important role. The described simplified numerical method has been validated by comparing with model tests of mooring loads on a single net cage with two circular elastic floaters and bottom weight ring in waves and currents. It is discussed which parts of the complete system play the most important roles in accurately determining the mooring loads. Many realizations of a sea state are needed to obtain reliable estimates of extreme values in a stochastic sea. In reality, many net cages operate in close vicinity, which raises questions about spatial variations of the current and wave environment as well as hydrodynamic interaction between the net cages. Live fish touching the netting can have a non-negligible influence on the mooring loads. It is demonstrated by numerical calculations in waves and currents that a well boat at a net cage can have a significant influence on the mooring loads and the bending stresses in the floater. The latter results provide a rational way to obtain operational limits for a well boat at a fish farm. Sloshing has to be accounted for in describing the behavior of a closed fish farm when important wave frequencies are in the vicinity of natural sloshing frequencies. The structural flexibility has to be considered in determining the natural sloshing frequencies for a membrane-type closed fish farm. Free-surface non-linearities can matter for sloshing and can, for instance,result in swirling in a certain frequency domain for a closed cage with a vertical symmetry axis.  相似文献   

14.
Environmental effects have an important influence on Offshore Wind Turbine(OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element(BEM)—pan MARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations(Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   

15.
In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to conduct emission predictions.In this work,the Ricardo WAVE software is applied to the simulation of a particular marine diesel engine,a four-stroke engine used in the maritime field.Results from the bench tests are used for the calibration of the model.Finally,the calibration of the model and its validation with full-scale data measured at sea are presented.The prediction includes not only the classic engine operating parameters for a comparison with surveys but also an estimate of nitrogen oxide emissions,which are compared with similar results obtained with emission factors.The calibration of the model made it possible to obtain an overlap between the simulation results and real data with an average error of approximately 7% on power,torque,and consumption.The model provides encouraging results,suggesting further applications,such as in the study on transient conditions,coupling of the engine model with the ship model for a complete simulation of the operating conditions,and optimization studies on consumption and emissions.The availability of the emission data during the sea trial and validated simulation results are the strengths and novelties of this work.  相似文献   

16.
Temporal evolutions of scour at submerged circular cylinders were investigated. Flow visualization was carried out around the cylinders over plane, under developed and equilibrium scour holes. Video analysis technique was used to formulate the equations for determining the diameter of the horseshoe vortex around the submerged cylinders, which is also verified from the vector diagrams drawn using the velocity measurements. The scour process similar to live bed scour was noticed around the downstream cylinder. The diameter of the horseshoe vortex is found to depend on the diameter of respective cylinder, submergence ratio,spacing between the cylinders and skew angle. This formulation along with the dislodgement and transportation of a single sediment particle is further incorporated in the proposed model for determining the time variation of scour around the submerged cylinders. It is evident from the results that the upstream cylinder shelters the downstream cylinder and thereby reduces the scour at the downstream cylinder. Proposed model is further extended to incorporate the effect of non-uniformity of the sediment particles on the time variation of scour depth. The results indicate significant reduction of scour depth of around 6% and 35% for upstream and downstream cylinders respectively due to the formation of the armor layer. The model is also compared with the local scour component of field data around cylindrical bridge piers to establish the differences in the scour process around a partially submerged cylinder and fully submerged tandem and skewed cylinders.  相似文献   

17.
This paper presents a contribution related to the control of nonlinear variable-speed marine current turbine(MCT)without pitch operating below the rated marine current speed. Given that the operation of the MCT can be divided into several operating zones on the basis of the marine current speed, the system control objectives are different for each zone. To deal with this issue, we develop a new control approach based on a linear quadratic regulator with variable generator torque. Our proposed approach enables the optimization of the rotational speed of the turbine, which maximizes the power extracted by the MCT and minimizes the transient loads on the drivetrain. The novelty of our study is the use of a real profile of marine current speed from the northern coasts of Morocco. The simulation results obtained using MATLAB Simulink indicate the effectiveness and robustness of the proposed control approach on the electrical and mechanical parameters with the variations of marine current speed.  相似文献   

18.
In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact due to shipping of water on the deck of the vessel is computed using commercial CFD software and used as an external force in coupled BEM-FEM solver. Other hydrodynamic forces such as radiation, diffraction, and Froude-Krylov forces acting on the structure are evaluated using 3 D time domain panel method. To capture the structural responses such as bending moment and shear force, 1 D finite element method is developed. Moreover, a direct integration scheme based on the Newmark–Beta method is employed to get the structural velocity,displacement, etc., at each time step. To check the effect of the green water impact on the structure, a rectangular barge without forward speed is taken for the analysis. The influence is studied in terms of bending moment, shear force, etc. Results show that the effect of green water impact on the bow region can be severe in extreme seas and lead to various structural damages. Similarly,it is also verified that vessel motion affects green water loading significantly and therefore one must consider its effect while designing a vessel.  相似文献   

19.
在恶劣的海洋环境下,浮式风机展现出复杂的动力特性。因此,对海上浮式风机的动力响应进行研究非常重要。本文基于有限元法与若丹速度变分原理,建立了浮式风机的刚-柔耦合动力学模型,依此编写了相应的数值计算程序并验证了程序的正确性。以安装在OC4半潜型浮式基础上的NREL-5MW水平轴风机为例,通过对比分析,研究了浮式基础的运动对风机动力特性的影响。结果表明,基础运动通过改变风机在风场中的位置与姿态对气动载荷与叶片变形产生影响。本文研究成果可以为海上浮式风机叶片设计提供一些合理建议。  相似文献   

20.
本文结合模型试验,采用数值重构的模型,以一浮式半潜平台为算例进行时域全耦合分析,就锚泊定位与动力辅助锚泊定位对平台气隙影响的敏感性展开研究,深入探索了定位方式差异对平台气隙的影响特性及其机理。研究得到如下结论:动力辅助锚泊定位平台较之于纯锚泊定位平台,锚链对平台的垂向约束相对较小,在垂向方向,平台与波浪之间的随动性更好,从而减小了平台与水质点之间的相对运动,对气隙有着较好的改善效果。在同等工况下,锚泊定位方式平台发生负气隙的概率大于动力辅助锚泊定位方式平台,其波浪砰击也更为剧烈。在平台气隙数值模拟时,应充分考虑定位方式差异对平台安全作业的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号