首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
提出电控空气悬架(Electronically Controlled Air Suspension,ECAS)的参数自整定模糊PID控制策略,设计参数自整定模糊PID控制器。利用AMESim软件建立1/4电控空气悬架系统模型,采用Matlab/Simulink和AMESim在不同路面、不同车速下对空气悬架系统分别进行PID控制与参数自整定模糊PID控制策略下的联合仿真。仿真结果表明:与PID控制仿真比较,采用参数自整定模糊PID控制策略使电控空气悬架的性能指标得到显著改善。搭建1/4电控空气悬架试验台,利用电液伺服激振台进行激励加载,完成硬件在环实时仿真测试,试验结果证明采用参数自整定模糊PID控制能有效提高悬架的总体性能。  相似文献   

2.
以飞思卡尔公司16位单片机MC9S12DP256为核心控制单元,基于PID控制策略,并利用Matlab、Labview软件。针对气囊-组合电磁阀,对电控空气悬架的软、硬件控制系统进行设计。控制系统可较好地控制车身高度,抑制系统振荡,改善电控空气悬架的性能。  相似文献   

3.
空气悬架车辆车身高度PID控制的仿真研究   总被引:4,自引:1,他引:4  
以空气悬架车辆为研究对象,通过拉格朗日方程方法建立其多刚体模型,采用PID和PD控制策略,对阶跃输入下的车身高度响应进行了仿真计算和对比分析。计算结果表明,由车辆多刚体模型和PD控制策略组成的电控空气悬架系统,在实现车身高度控制时改善了车辆的乘坐舒适性。  相似文献   

4.
利用CATIA建模以及有限元分析设计了一款1/4车辆模型的电控空气悬架试验台,该台架不仅适用于测试气囊特性曲线,还可以模拟由静态载荷、动态载荷以及交变载荷变化引起气囊高度的改变,从而观察系统为保持车辆高度不变所做出的反应,最后通过空气弹簧特性试验,验证了该台架符合设计需求,为下一步开发空气悬架控制策略提供了平台。  相似文献   

5.
基于AMESim软件建立1/4空气悬架系统模型,利用Matlab软件设计空气悬架系统控制器,使用Matlab和AMESim对空气悬架系统进行联合仿真。白噪声路面信号输入下的联合仿真结果分析表明,安装主动空气悬架系统车辆的最大振动加速度与振动加速度均方根、平均车身高度、动载荷均比安装被动空气悬架系统的车辆小,该仿真结果符合有关主动空气悬架系统的一般研究结论,该控制方法可以有效提高车辆的平顺性。  相似文献   

6.
城市公交客车采用空气悬架越来越多,为了保证空气悬架系统的质量,充分发挥其优越的使川性能,除各客车主机厂生产时要按照空气悬架厂家的要求进行安装调试外,公交单位的正确使用和及时的维护保养也是至关重要的。本文结合我公司使用的空气悬架主要结构及其维护保养作一些说明,为广大公交企业正确使用和维护保养提供参考。  相似文献   

7.
为了研究后轴空气悬架对货车平顺性的影响,利用ADAMS软件,基于匹配原则分别建立了后轴平衡悬架与后轴空气悬架的货车多体动力学仿真模型.开展了整车在随机路面上的平顺性仿真,对比分析了2种悬架对平顺性的影响,同时研究了车速和货物质量对后轴空气悬架货车平顺性的影响.结果表明,后轴安装空气悬架能够明显改善车辆的平顺性,减小货物的振动;同时,降低车速,减小货物质量都将有利于改善车辆的平顺性.  相似文献   

8.
汽车悬架系统承受着路面传给汽车车轮的各个方向的力,同时担负着保证汽车行驶平顺性和操纵稳定性的重任,是汽车各总成中磨损较为严重的部分之一.本文借鉴电磁悬浮技术在磁悬浮列车上的成功应用,结合汽车悬架系统的基本结构,提出电磁式电控悬架的想法,并把传统的电控悬架的特点与之相比较.电磁式电控悬架在一定程度上减少了摩擦,增加行驶平顺性,简化悬架结构.  相似文献   

9.
将产品级参数化设计方法和实例推理技术运用到客车空气悬架设计中,分析了并构建了空气悬架的产品级参数化模型。在UG平台上,建立了典型客车空气悬架实例库及其参数化模板,通过UG二次开发工具设计界面,在Visual C++环境中结合COM组件与Access 2007数据库技术,开发了客车空气悬架的结构件参数化设计系统。通过实例介绍了参数化设计过程,建立客车空气悬架的参数化模型,结果验证了该参数化设计系统的有效性。  相似文献   

10.
汽车半主动空气悬架的神经网络控制方法   总被引:6,自引:1,他引:5  
为了提高汽车半主动悬架的控制效果,以空气弹簧压力为控制对象,应用自适应神经网络控制方法,进行了不同路面激励下的半主动空气悬架的车身垂直加速度、悬架动挠度和车轮动载荷的计算机仿真和实验研究,并与被动悬架系统的相应参数进行了对比。发现在白噪声路面和较低频率的正弦路面激励下,半主动空气悬架采用自适应神经网络控制能够明显降低车身垂直加速度、车轮动载荷和悬架动挠度,降低范围为16%~85%,提高了车辆的操纵稳定性,改善了车辆的行驶安全性与乘坐舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号