首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
过海隧道在我国发展迅速,拟建的琼州海峡通道、渤海海峡通道等跨海通道将面临超长距离、超高水压隧道掘进安全等技术难题的重大突破。根据目前的研究和实践,盾构隧道掘进水压在0. 8 MPa左右,一次掘进距离在8 km以内。为解决高水压条件下过海盾构隧道安全掘进和运营期间安全服役的难题,以琼州海峡中线盾构隧道(水压1. 2 MPa、掘进长度12 km)为工程背景,采用工程类比、施工阶段关键技术分析的方法,对高水压长距离过海盾构隧道关键技术可行性进行分析,提出盾构主动换刀+被动饱和潜水带压换刀+非常状态冻结加固脱困的综合换刀技术以及可更换密封综合技术,可保障盾构超长距离掘进;提出超高水压盾构复合式管片衬砌和内外结合的多道防水结构,可保障超高水压条件下盾构管片结构的安全服役。  相似文献   

2.
正2020年1月20日,青岛地铁8号线大洋站—青岛北站东侧过海段泥水盾构安全到达接收点,标志着地铁8号线5. 4 km过海隧道顺利贯通。这是目前国内最长的过海地铁隧道,创造了国内首例泥水盾构3节分体始发和过海隧道泥水盾构月均掘进220 m共2项全国纪录。青岛地铁8号线全长61. 4 km,共设车站18座。大洋站—青岛北站区间全长7. 9 km,其中海域段长5. 4 km,是目前国内最长的过海地铁隧道。由于地质条件极其复杂,经反复论证确定采用"盾构法+矿山法"对打施工,东侧过海段2. 9 km采用泥水盾构法施  相似文献   

3.
髙昇  王保群  樊建房 《公路》2021,(4):380-383
福州市轨道交通2号线苏洋站~中间竖井区间采用盾构法施工,施工期间穿越硬岩复合地层、软土复合地层和硬岩复合地层,导致盾构机面临硬岩掘进刀盘磨损严重、穿越不同地层界面需开仓换刀及穿越软弱土层需渣土改良等技术难题。现从硬岩掘进刀盘配置与动力输出、开仓换刀工艺设计及软土掘进工艺等3个方面,开展了盾构施工关键设备(工艺)与工程地质匹配性研究分析,有效地降低了硬岩地层刀盘磨损,实现了穿越不同地质界面快速开仓换刀,避免软弱土层局部坍塌等问题,为工程的顺利实施提供有力保障。  相似文献   

4.
正近日,厦门地铁2号线过海隧道施工的首台盾构机在厦门海沧大道站始发。该工程开创了地铁海底盾构施工的先河,标志着厦门轨道交通2号线的建设进入新阶段,正式展开过海隧道的掘进施工。轨道交通2号线作为厦门地铁交通线网中的中心放射骨干线,主要承担了厦门岛与海沧城区间跨海  相似文献   

5.
贾科 《路基工程》2010,(3):164-166
深圳地铁5号线长龙站—百鸽笼站区间隧道洞身部分位于全断面高强度微风化角岩地层,采用盾构法施工。文中对盾构穿越极硬岩地层时所遇到的施工技术难题进行分析,通过优化掘进参数与合理配置刀具,顺利解决了盾构在极硬岩层条件下掘进施工时由于推进参数和刀具设置不合理,造成的刀具磨损严重、换刀频繁、推进速度缓慢等影响施工进度的问题。  相似文献   

6.
王昊宇 《隧道建设》2017,37(Z1):143-148
为了提高超大直径盾构在长距离复杂地层掘进过程中刀具更换的安全性和经济性,本文结合武汉轨道交通7号线三阳路长江隧道工程,通过对第四代常压换刀技术在复合地层盾构施工中的应用研究,总结出刀具检查与更换可遵循的一般规律,并针对换刀工法提出风险应对与优化改进措施。  相似文献   

7.
受地层条件及刀具耐磨的影响,盾构机在掘进隧道施工到一定工程量后,刀具将会磨损,须换刀处理。由于地层条件的复杂性,开仓换刀条件的确定很重要。结合广州地铁三号线大石—汉溪盾构区间施工实例,介绍了盾构机开仓换刀环境的选择与经验。  相似文献   

8.
陈健 《隧道建设》2018,38(Z1):175-181
泥水盾构在掘进过程中,由于受到环境条件有限、地质条件差、水土压力高、地层复杂多变等多种因素的影响,如何安全高效地更换滚刀和齿刀一直是盾构施工所面临的工程难题。本文提出一种高水土压力条件下滚刀、齿刀常压更换技术,介绍该技术的工作原理和作业要点,并以武汉地铁8号线越江隧道工程为例,针对越江隧道江中段的上软下岩复合地层以及工程所面临的特有工程难点,详细阐述滚刀、齿刀常压更换技术的具体操作步骤及其技术优势。通过采用该技术,有效提高了换刀效率,降低了安全风险,确保了施工的顺利进行。  相似文献   

9.
陈强 《路基工程》2019,(1):168-171
杭州富水粉砂地层粉土粉砂含水量丰富,且易产生流砂,在土仓内建立并保持稳定的换刀环境特别困难。以杭州地铁1号线秋涛路站至城站站区间盾构隧道下穿铁路股道带压换刀施工为例,从地面加固、换刀前掘进控制措施、气压值确定、膨润土泥浆压注、土仓清仓建压等多种措施综合应用,确保了盾构隧道下穿铁路股道带压换刀安全。  相似文献   

10.
盾构穿越复杂水文地质地层时,常因刀盘刀具过量磨损而导致盾构被迫停机,这已成为困扰盾构施工的重要难题之一,进行刀具更换是目前解决这一难题,恢复盾构掘进的主要方法。然而,工程界尚未形成系统的盾构换刀技术体系。针对这一问题,在对已有技术研究理解和总结的基础上,阐述了盾构刀具更换技术的内涵和主要分类,并结合典型盾构工程换刀作业实例和笔者所在课题组的研究成果,对加固地层-常压换刀、基于常压可更换刀盘设计的换刀、带压换刀等3种主要换刀技术的原理、技术流程、关键技术、适用范围和优缺点等进行系统的分析和总结。最后介绍了日本最新的刀具更换技术,并对中国盾构隧道刀具更换技术进行了展望。结果表明:地层加固-常压换刀技术和带压换刀技术都是在常规刀盘设计条件下形成的,其关键都是保障开挖面地层的稳定性;差别在于,前者是使加固开挖面地层达到自稳后,在常压条件下实施的,而后者则是通过泥浆渗透成膜等辅助工艺提高开挖面地层的闭气性后,在气压支护条件下实施的;对于基于常压可更换刀盘设计的换刀技术来说,开挖面地层的稳定性不需要重点考虑,盾构机特殊的中空刀盘辐臂和常压可更换刀具设计才是该技术的关键。  相似文献   

11.
对盾构法施工跨海隧道,有效降低由于滚刀磨损所带来的作业风险并有计划地进行滚刀更换十分重要,针对厦门轨道交通2号线跨海段地质条件,基于理论预测模型和实验预测模型对几类岩石条件下滚刀的换刀距离进行了预测。通过分析刀具更换工法的适应性,提出对厦门轨道交通2号线跨海段换刀位置与换刀工法的建议: 1)淤泥段采用切削类刀具,换刀方式采用常压开舱换刀,换刀位置在1#联络通道附近; 2)全强风化低压段采用盘形滚刀,换刀方式以带压进舱换刀为主,在该掘进段需要换刀4次,其中第3次在大兔屿1#中间风井处更换,其余3次均在海底更换; 3)全强风化高压段采用盘形滚刀,在该掘进段需要换刀4次,换刀方式以饱和气体带压进舱换刀为主; 4)中微风化硬岩段采用盘形滚刀,在该掘进段需要换刀3次,换刀方式以减压限排换刀为主。  相似文献   

12.
杨育 《隧道建设》2018,38(Z1):182-187
为有效控制海底隧道盾构刀具更换风险,提高盾构施工效率,针对厦门轨道交通3号线跨海段复杂地层,通过开展不同类型岩石的缩尺滚刀磨损试验和岩石磨蚀性试验,揭示滚刀材料磨损速率与岩石磨蚀性指标CAI值呈幂指数关系,建立通过测定拟建工程岩样CAI值预测工程刀具消耗的方法。利用建立的预测方法,对厦门轨道交通3号线中微风化花岗岩地层的滚刀批量换刀距离进行预测,得到该地层下边滚刀的批量换刀距离为50 m,正滚刀的批量换刀距离为215 m; 并在此基础上给出滚刀更换位置与换刀工法建议,为该工程与类似工程施工提供参考。  相似文献   

13.
针对盾构施工过程中经常遇到的2大问题:1)盾构在复杂地层中掘进遇到的盾构选型难问题,如盾构区间一段适合土压盾构掘进,另一段适合泥水盾构掘进,而采用单一掘进模式的盾构都无法应对较大的地层变化; 2)盾构在复杂地层、长距离掘进施工时,开舱检查并更换刀具不可避免,盾构在上软下硬/软弱地层/含水砂性地层开舱存在极大的工程安全风险。在原有盾构的基础上,通过采取改造盾构内部结构、搭载冷冻设备、改进设备系统等手段,研制出并联式双模式盾构及搭载冷冻刀盘式盾构。通过广州地铁9号线、广州地铁21号线、220 kV石井—环西电力隧道(西湾路—石沙路段)工程案例,总结出双模式盾构施工技术与冷冻刀盘技术。并联式泥水/土压双模式盾构兼具土压平衡盾构和泥水平衡盾构的功能及施工优势,可根据隧道沿线地表环境条件和隧道穿越地层条件,合理划分采用泥水或土压模式施工的地段,且盾构施工环境适应性强,可在不拆装任何部件的情况下安全、快速地实现掘进模式的切换。将冷冻法与盾构刀盘结合在一起,使盾构刀盘具备冻结地层的功能,通过冷冻刀盘在隧道内对土舱外土层冻结加固,使其达到常压开舱的要求,与双模式盾构相结合,兼容性好,不存在功能上的冲突。  相似文献   

14.
窦成功  王宁 《隧道建设》2019,39(Z1):176-179
为了研究盾构切桩掘进对新托换桩的影响,以南昌地铁2号线某盾构切桩工程为背景,运用ABAQUS有限元软件建立三维实体模型,分析施工过程中新托换桩位移和弯矩变化情况。设置切除旧桩前、刚切除旧桩后以及切除旧桩并向前掘进一定距离3种工况,提取3种工况下新托换桩的变形和弯矩进行分析,进而对直接盾构切桩掘进方案的合理性进行评价。计算结果表明: 1)盾构掘进切除旧桩造成托换桩垂直于隧道轴线方向的最大变形发生在隧道上方约2.5 m处,沿隧道轴线方向的最大变形发生在桩顶; 2)托换桩桩身最大弯矩出现在隧道断面深度范围内,最大值可达到600 kN·m以上,因此桩基设计时,不仅要进行正截面受压承载力验算,还需进行受弯承载力验算。  相似文献   

15.
宁锐  郭朝  黄明利 《隧道建设》2015,35(Z2):176-180
盾构刀盘与地层间的适应性是制约盾构应用效果的关键因素,这一点在复合地层中尤为突出。深圳地铁11号线采用了7 m CET6950型复合土压平衡盾构,分析其盾构刀盘与深圳复合地层的适应性,既利于工程建设的开展,又利于推动我国盾构技术的发展。依托深圳城市轨道交通11号线车公庙站—红树湾站区间隧道工程,依据盾构刀盘的设计经验和广州、深圳复合地层中盾构施工的案例,并结合本区间盾构始发段掘进参数,就盾构刀盘与复合地层之间的适应性进行分析。分析指出: CET6950型盾构刀盘与复合地层具有良好的适应性。  相似文献   

16.
土压平衡盾构机在富水复合地层中掘进,由于穿越地层的不均匀性,加之地层溶洞发育,盾构刀具经常会出现非正常损坏的现象,从而降低盾构掘进功效,增加盾构施工成本,同时增加换刀安全风险,为此开展富水复合地层掘进盾构刀具损坏控制技术研究意义重大。以徐州城市轨道交通2号线周七区间隧道为工程实例,通过研究解决富水复合地层掘进盾构刀具损坏控制难题,为后续同类型工程提供参考与借鉴。  相似文献   

17.
安斌  刘学霸  杨春勃  王祖贤 《隧道建设》2020,40(Z2):289-296
盾构始发是盾构施工的关键环节,也是盾构施工时的高风险环节。为给南昌地区富水砂层条件下盾构曲线始发施工提供掘进参数设置样本,以南昌市轨道交通3号线绳金塔站—六眼井站盾构始发工程为背景,对富水砂层盾构小半径曲线始发段主要掘进参数进行统计分析,确定相关参数的优势区间,并基于盾体姿态控制参数和地表沉降进行掘进参数控制效果评价。结果表明: 1)盾构水平方向2组油缸推力在曲线段和直线段变化差异明显,线路平曲线半径越小,差值越大,在左右线曲线段和直线段水平方向2组油缸推力分别相差872%和758%; 2)线路平曲线半径越小,所需的总推力和刀盘转矩越大,而掘进速度略有降低,左右线总推力均值为1 3976 t和1 6717 t,刀盘转矩均值为3 1011 kN·m和3 7239 kN·m,掘进速度均值为388 mm/min和351 mm/min; 3)由于始发段掘进断面地层相对均一,土舱压力基本随隧道埋深呈线性增加,而由于右线曲线半径更小,因此右线土舱压力离散程度相对较高; 4)左右线盾尾注浆量差异不大,优势区间均为3~6 m3,均值约为4 m3; 5)左右线曲线始发段水平方向盾体姿态超限率分别为2%和4%,地表累积沉降最大值仅为625 mm,表明本工程小半径曲线始发段掘进参数控制效果较好,掘进参数对地层条件和线路线型具有良好的适应性。  相似文献   

18.
康宝生 《隧道建设》2012,32(1):121-126
通过调研重庆轨道交通六号线二期和会展中心支线项目中铁盾构和LOVAT盾构的应用情况,分析盾构使用中出现的中心刀异常损坏、卡盾以及螺旋输送机磨损严重、马达故障频发等问题的主要原因,提出在全断面硬岩条件下盾构掘进需要注意的重点事项,包括改变传统观念、树立硬岩掘进理念、加强刀具管理、合理选择掘进参数、严密控制盾构姿态等,对于从事盾构施工的技术和管理人员不断提升盾构法施工管理水平,真正实现盾构法施工的“3个和谐”具有一定的指导借鉴作用。  相似文献   

19.
为了研究风化花岗岩地层盾构区间盾构机滚刀的磨损状态和使用寿命,采用基于土体性质的线速率分析法、试验段滚刀磨损实测数据的直接判定法和盾构实测掘进参数的间接判定法,对深圳地铁7号线珠光站—龙井站隧道工程盾构机刀盘正面滚刀的使用寿命进行了预测,对施工中的滚刀磨损状态进行了判断。研究结果表明:预测的滚刀磨损量与实测数据误差较小;计算推断的滚刀弦磨情况与盾构开仓检查的结果相符;提出的刀具使用寿命可供施工中换刀里程选取时参考。  相似文献   

20.
吴忠善  杨钊  杨擎 《隧道建设》2014,34(7):673-678
对于复杂地质条件下的盾构掘进,刀具更换往往不可避免。由于地质的复杂性、多变性和周边条件的局限性,常常无法实施盾构周边土体加固常压进舱换刀。带压进舱换刀技术以无需地层加固、地质适应性强、对周边环境要求低和影响小等特点,解决了苛刻条件下的换刀难题。为了能实现强渗透地层气压状态下开挖面稳定,采用室内试验对进舱泥膜的气密性进行了研究,研究结果表明: 进舱泥膜不仅要在开挖面形成一层致密的不透气泥皮型泥膜,还需在地层中形成均匀的透渗带泥膜,方能达到最佳的闭气效果。基于研究成果,南京纬三路过江通道N线工程实现了泥水盾构开挖面大面积气压支护进舱作业,并采用压缩空气作业与饱合潜水作业完成了盾构刀盘的维修和刀具的检查与更换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号