首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2017,(3)
针对地铁盾构隧道近接桩基施工情况,利用有限元软件,在考虑前方土体受到刀盘施工扰动、土仓压力、盾尾注浆作用等施工参数下,对盾构隧道动态施工中正上方桩基的承载性能进行了数值计算。结果表明,盾构施工对桩基沉降和承载力损失较大的区域主要集中在刀盘距桩轴线+6~-12m之间;盾构正下方穿越既有桩基时,存在一个特定安全施工距离,约为3m;盾构隧道施工前桩基承受的荷载不同,盾构施工过程对桩基承载力的影响也就会不同。  相似文献   

2.
武汉地铁2号线南延线区间盾构隧道与光谷大道高架桥匝道桩基础施工距离小,为保证隧道顺利掘进和桩基安全,文中采用三维有限元法对其进行数值计算,模拟隧道开挖过程,求解隧道围岩和桩基应力分布和空间变形情况。计算结果显示,理想状态下隧道盾构掘进对邻近桩基的受力和变形影响小,盾构过程安全。同时,为防止意外情况发生,提出桩基加强、保护和预防措施。  相似文献   

3.
基于广州洛溪大桥拓宽工程现场监测数据,对旋挖钻孔时临近隧道结构的变形进行分析,以研究旋挖钻孔成桩技术对临近地铁隧道结构的影响。该工程中,当桥梁桩基距离地铁盾构边线超过7 m时,采用旋挖钻机成孔施工方法;当桩基与地铁盾构边线的距离减小至约3.0 m时,采用旋挖钻机与全套管全回转钻机联合成孔施工方法。现场监测结果表明,桩基施工过程中,地铁隧道监测点平行于隧道中轴线方向的累计位移最大值为2.41 mm,垂直于隧道中轴线方向的累计位移最大值为1.94 mm,垂直于地面方向的累计位移最大值为2.02 mm,均在合理范围内。地铁左、右轨道差异沉降值存在超过2 mm但小于3 mm的现象,道床平顺度也存在个别监测值超过2 mm/10 m但小于3 mm/10 m的现象。本工程旋挖钻孔施工方法对地铁隧道变形影响较小,但左右轨道差异沉降与道床平顺度应该受到重点监测。  相似文献   

4.
地铁盾构隧道桩基托换施工技术研究   总被引:5,自引:0,他引:5  
丁红军  王琪  蒋盼平 《隧道建设》2008,28(2):209-212
 城市地铁盾构隧道在从地面建筑物下穿越时,会对既有建筑物的安全稳定造成影响。如何合理控制由于隧道施工引起地面建筑物的倾斜、地基沉降,是地铁工程设计和施工时必须考虑的。以广州地铁五号线盾构区间建筑物桩基托换为例,详细讲述桩基托换设计、施工全过程,给类似工程的设计、施工提供参考。  相似文献   

5.
为解决土压盾构在地铁隧道施工过程中穿越密集建(构)筑物桩基群的难题,以宁波地铁3号线3103标钱仇区间盾构掘进切削灌注桩桩基群工程为研究对象,在现有施工技术的基础上,对切削桩基施工的难点和重点技术问题进行深入研究,针对切削桩基通过桩基群时面临的一系列问题,制定相应的技术方案。对工程实施效果中参数变化、刀具管片状态、混凝土钢筋统计和地表及周围建筑物沉降监测结果进行分析。结果表明:在切削桩基施工中,各方面控制相对较好,刀具没有出现较大磨损,管片没有发生破损与渗漏,地表沉降量及建筑物沉降量在可控范围内,施工方案是可行的,采用盾构直接切削桩基具有经济、安全、对环境影响小的优点。  相似文献   

6.
南京地铁三号线大明路站-明发广场站盾构区间穿越软流塑地层中的箱涵及其群桩基础,为确保盾构顺利穿越,文章介绍了4种群桩处理技术方案: 方案1(拔桩、钢筋混凝土框架结构箱涵恢复、盾构正常掘进方案)、方案2(拔桩、桩基托换、恢复盖梁箱涵、盾构正常掘进方案)、方案3(矿山法隧道托换、盾构过站方案)和方案4(钢筋混凝土框架结构箱涵托换、矿山法隧道内截除桩基、隧道回填后盾构掘进方案),通过对方案进行对比分析,最终选择了方案4。然后介绍了软流塑地层矿山法隧道施工关键技术和盾构过矿山法隧道关键技术。通过对施工监测的数据进行分析,发现通过采取基底加固后箱涵托换、劈裂注浆加固地层后CRD工法施工矿山法隧道、矿山法隧道内桩基截除、盾构通过回填后的矿山法隧道等关键技术措施,确保了盾构顺利穿越过街涵群桩。  相似文献   

7.
在某城区顶管隧道始发井和接收井开挖施工过程中均发现基坑中存在未知的建筑残留桩基。因时间久远,施工区域内残留桩基的位置和范围均无法获知。为保证顶管隧道顺利施工,需在施工前调查清楚其影响范围内是否存在残留桩基。由于顶管隧道横穿繁忙交通道路,地表没有大范围钻孔勘查的条件,只能采用地球物理方法进行探测。经比选,采用探地雷达和磁法探测相结合的方法可满足探测要求。根据探测结果,在异常区域进行钻探验证,并采取针对性的处理措施,保证了顶管隧道的安全施工。  相似文献   

8.
成都地铁河中桥梁桩基托换施工技术   总被引:1,自引:0,他引:1       下载免费PDF全文
孟庆军 《隧道建设》2011,31(1):91-97
成都地铁2号线春熙路站-东门大桥站区间盾构隧道左线自东门大桥桩基中穿过,为保证盾构顺利通过并确保桥梁安全,采用托台换桩法对侵入隧道桩基进行托换处理。施工中采用河中围堰、帷幕注浆、降水、人工挖孔和静态爆破等辅助方法有效控制了地下水的影响和桥台沉降,确保了桥梁、管线安全及整个托换施工的顺利实施。  相似文献   

9.
以长沙地铁1号线新河三角洲站—开福寺站区间隧道为工程背景,利用FLAC3D有限差分方法模拟盾构隧道近距离侧穿桩基的施工过程,揭示了盾构隧道侧穿桩基对地表沉降、桩基变形与内力的影响规律。研究表明盾构隧道掘进过程中将会引起邻近桩基发生平行于盾构轴线和垂直于盾构轴线两个方向的挠曲变形,从而导致桩基内部产生较大的附加轴力和弯矩;桩基础的应力和变形都与盾构的推进过程密切相关,在盾尾穿越桩位前后0.5 D距离范围内达到最值。  相似文献   

10.
地铁盾构法具有经济、快速、安全、机械化程度高等优点,是地铁区间隧道施工中常用的一种施工方法。在施工过程中,为了保证盾构施工顺利开展,提升地铁施工的综合效益,需要做好地铁区间隧道盾构施工的安全风险管理工作。以实际工程为例,对地铁区间隧道盾构施工中存在的安全风险进行分析,然后对隧道盾构施工安全风险管理措施进行探讨,以期为类似工程提供借鉴。  相似文献   

11.
何茂周 《隧道建设》2014,34(10):981-989
为研究地铁隧道采用矿山法开挖初期支护+盾构空推拼装管片施工遇桥桩侵入隧道的综合处理技术,以深圳地铁9号线一区间隧道为研究实例,采用理论计算与工程类比相结合方式进行设计,在施工过程中加强施工现场监控量测,并指导施工。先确立处理原则、处理思路和处理范围,再制定洞外支顶、洞内托换的处理方案,最终实施洞外钢管撑支顶、洞内拱顶预注浆加固、初期支护加强、截桩、二次衬砌永久支撑桩基、三次衬砌拼装加强管片补强相结合的综合处理技术。实践证明,采用该综合技术,顺利穿越了桩基,保证了隧道及桥梁结构的安全,对洞内洞外周边的环境影响很小。  相似文献   

12.
以上海市轨道交通某盾构区间隧道侧穿内环高架桥桩基为背景,通过有限元数值模拟,分析盾构隧道穿越施工引起的桩基竖向位移、水平位移及倾斜率。研究表明:使用有限元软件模拟盾构穿越施工,可以较好地得到盾构隧道穿越引起的邻近桥桩变形量,以及桩基变形变化趋势;计算结果结合现场实测数据对比表明,在采取可靠措施的前提下,盾构隧道施工引起的邻近桩基竖向变形、倾斜,在桩基变形允许范围内,满足高架桥正常运营要求;小半径盾构隧道施工,需严格控制地层损失率,避免纠偏量过大、过猛。  相似文献   

13.
利用有限元分析软件建立桥梁基础及双孔地铁的模型,模拟地铁盾构的施工工况。研究盾构施工前后地铁隧道、周边土体变形趋势及其对地铁顺穿桥梁的桩基础轴力、弯矩、水平变形及沉降的影响。分析结果表明:隧道施工造成隧道上部土体沉降,下部土体隆起,隧道呈现椭圆形;其顺穿桥梁桩基轴力、弯矩增加幅度较大,桩基在地铁隧道深度以上竖向沉降,在隧道深度下局部桩体隆起,桩身位移呈现“3”字形,最大位移位于隧道中心标高与隧道底标高之间。  相似文献   

14.
结合国内某城市盾构隧道下穿的实际工程,采用三维有限元数值模拟方法,研究盾构穿越施工对高铁桥梁桩基的影响和控制措施。结果表明:在中风化泥质粉砂岩中,隧道施工完成后,桥梁桩基水平位移背离隧道方向;盾构隧道施工引起桩的最大水平位移为0.24 mm,承台中心最大沉降为0.52 mm,产生的最大附加轴力为230 kN,变形值及桩底承载力满足规范要求,不必对桥梁桩基进行主动加固。结合下穿之前的实际掘进试验,提出了盾构近距离下穿高铁桥梁的施工控制措施。计算结果与现场监测数据基本一致,从而说明模型的合理性。  相似文献   

15.
吴红博  周传波  蒋楠  高坛 《隧道建设》2019,39(2):219-226
为分析圆砾地层双线地铁隧道分别采用泥水和土压平衡盾构施工时的地层变形特征,以南宁地铁3号线东葛路站-滨湖路站区间盾构施工工程为背景,采用现场监测数据分析2种盾构施工时的地表横向沉降特征和监测点纵向沉降历程特征。利用FLAC3D软件对2种盾构工法进行简化模拟,验证模拟方法的可行性; 设计双线地铁隧道分别采用土压平衡盾构和泥水平衡盾构、全部采用泥水平衡盾构、全部采用土压平衡盾构3种工况的模拟方案,研究3种工况下的地层变形特征。研究结果表明: 1)双线地铁隧道采用2种类型盾构施工时,地层沉降曲线偏向土压平衡盾构施工的隧道一侧; 采用同种类型盾构施工时,地层距离隧道越近,沉降曲线呈“W”特征越明显; 2)双线地铁隧道采用土压平衡盾构施工时各地层沉降较大,地表横向沉降影响范围约50 m; 采用泥水平衡盾构施工时各地层沉降相对较小,地表横向沉降影响范围约30 m; 3)3种工况下,双线地铁隧道采用土压平衡盾构施工时引起的地表水平位移最大。  相似文献   

16.
在城市盾构隧道建设过程中,盾构掘进若遇到花岗岩风化残留体(俗称孤石),掘进施工将非常困难,盾构姿态难以控制,刀具磨损严重,刀盘和刀座易变形,常常会出现喷涌、塌方、刀盘被牢牢卡住或刀盘严重磨损等意外情况。为保证盾构的顺利掘进,需采用物探方法探测出隧道沿线孤石分布情况。针对南方地区花岗岩地层特征,采用数值模拟和现场应用试验的方法开展花岗岩风化残留体的地震CT法探测技术研究,经钻探取芯验证与实际较吻合,解决了花岗岩风化残留体的准确探测与定位的难题。提出的一些合理化建议可为今后类似城市地铁工程施工提供参考。  相似文献   

17.
为了优化近地铁段桩基施工技术,提高地铁隧道保护效果,采用监测涉地铁试桩工程施工过程引起的隧道水平变形和沉降位移变化的方法,并结合施工工况,分析不同净距、不同桩基类型下桩基施工引起的地铁变形特点。研究表明: 1)桩基施工距离地铁隧道净距5 m,采用全套管全回旋钻机施工时,对隧道水平收敛位移的影响大于沉降位移,全回转钻机施工过程中应注意取土时机及速度。2)桩基施工距离地铁隧道净距12 m,采用全回转半套管工艺施工时,对隧道沉降的影响大于水平收敛位移,套管长度需满足穿透承压水层。3)桩基施工距离地铁隧道净距为20 m时,可使用常规旋挖钻机施工; 隧道水平位移在施工过程中的变化规律为先向远离桩基的方向变化,之后随着取土回移; 隧道沉降位移的变化规律为先向下沉降,之后随着深度的增加逐渐平稳。  相似文献   

18.
以深圳地铁7号线珠光站-龙井站区间盾构隧道下穿南坪快速龙珠大道跨线桥为依托,运用MIDAS GTS NX软件模拟了盾构掘进的全过程,得出了地面沉降和桩基倾角值;对施工时地面沉降进行预测,并与监测数据进行了对比,证明计算结果可靠。结果表明:地面沉降的理论计算最大值为8.5 mm,实际监测值为8.0 mm,误差为6.25 %;桥梁桩基产生隧道横断面、隧道纵向方向的最大倾角分别为39.62",39.2",其倾角在盾构机穿过桥基30 m后趋于收敛稳定。  相似文献   

19.
为解决在不影响既有桩基建筑物安全条件下保证盾构法隧道正常施工问题,以深圳地铁9号线大鹿区间盾构长距离连续切削群桩为背景,采用数值模拟及实测分析,研究盾构切削穿越桩基对地表沉降和桩基的影响,分析推力、扭矩等施工参数以及沉降监测数据,总结盾构切削穿越桩基时施工参数的变化规律以及建筑物沉降规律。主要结论如下:1)切桩时刻产生的沉降量占总沉降量的比例较大;2)桩基的数量、直径或位置不同时的地层响应各有不同的特点;3)合理选取施工参数需要综合考虑桩基情况和地质条件。  相似文献   

20.
为有效计算地铁隧道盾构穿越高架桥桩基托换施工前后桥梁承台及桩基受力的变化情况,保证桩基托换工程的顺利进行,本文依托厦门市轨道交通6号线隧道盾构下穿跨杏林湾路高架桩基托换工程,结合桩基托换工程特点和工程现场的实际情况,利用MIDAS/fea与MIDAS/civil建立桥梁桩基托换三维数值模型和梁单元模型,并通过该模型对施工现场的桥梁桩基托换工程进行数值计算,重点分析桩基托换施工中新建承台及桩基承载力的变化情况,据此提出桩基托换施工质量的控制措施,保障桩基托换工程质量,为类似工程的顺利建设提供理论指导与参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号