首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
针对在检验工程实际中发现的循环流化床水冷壁减薄的问题,本文通过锅炉结构形式和减薄部位的研究,分析炉膛水冷壁磨损减薄的主要因素和成因,进而提出相应的改进措施。  相似文献   

2.
本文对锅炉水冷壁爆管造成的原因进行了分析,是因长期受到炉内煤粉气流的冲刷使壁管磨损而减薄引起的。此外对爆管裂口的形态和形成的金相组织进行了探讨,并建议在锅炉检修时加强对水冷壁管的管壁测厚工作。  相似文献   

3.
我厂经多年实践于1987年研制了一种快速、节能的沥青加热炉,经过几年的使用,基本达到了设计要求,用户很满意.该炉是箱形结构(如图所示).内设有半圆形炉膛,火管、反射炉膛等;外有保温隔热层,另外,还配备相应的管路、沥青泵,引风机等设备.煤在炉膛燃烧,产生的火焰及高温烟气的流动路线如图中箭头所示.这样的烟道能将绝大部分热能传给沥青,使热能得到充分利用.  相似文献   

4.
低氮燃烧器改造后低负荷过、再热汽温偏低情况普遍存在。为解决某厂中储式制粉系统1025t/h锅炉低氮燃烧器改造后低负荷过、再热汽温偏低问题,通过三层燃尽风水平摆角不同组合、燃烧器垂直摆角调整、辅助风、消旋风与燃尽风配合、提高炉膛火焰中心等方法,使过、再热汽温达到设计值。供电煤耗较调整前降低1g/kwh左右,对同类型锅炉低氮燃烧器改造后调整有很好的借鉴意义。  相似文献   

5.
摩托车发动机的连续工作依靠可燃混合气的正常燃烧,即由火花塞高压跳火,点燃混合气形成火焰中心,并以一定的速度连续地向燃烧室四周传播,在极短的时间内把所有的混合气烧完。可燃混合气在气缸内正常燃烧时,缸内压力均匀,发动机声音清晰柔和。若燃烧不是由火花塞点燃(受到某些因素的影响),或其火焰传播速度超过正常的传播速度(正  相似文献   

6.
混凝土-钢管的界面损失(脱空、脱黏)直接影响钢管混凝土拱桥的工程质量和安全,其中膨胀剂的性能和掺入量以及混凝土后期收缩性是影响混凝土-钢管界面损失的重要因素。为减小混凝土-钢管界面损失,采用新型氧化镁复合膨胀剂配置出了初始工作性能良好、后期无收缩的新型C55高性能自密实无收缩混凝土,并将其应用于六景郁江大桥的实际工程中。实践表明拱肋钢管内的新型高性能自密实无收缩混凝土工作性能良好,超声波检测结果显示,该高性能混凝土密实度高、零脱空率且脱黏率低,能满足实际工程需求。  相似文献   

7.
高丹 《客车技术》2006,(4):34-36
近年我国的客车企业十分重视整车的安全性,车身强度作为安全性的一项重要指标已引起客车企业的普遍重视。众所周知,异型钢管是客车车身骨架的主要组成部分,异型钢管的强度将直接影响车身骨架的强度。在传统的加工工艺中,很多客车企业都使用火焰加热成形、割口弯曲成形等加工方法,由于以上加工方法对异型钢管的材质破坏较大,现在多采用整体成形工艺,下面简要介绍异型钢管的下料和成形等制作工艺。  相似文献   

8.
拉萨河特大桥主桥钢管混凝土配合比试验   总被引:1,自引:1,他引:0  
拉萨河特大桥主桥钢管拱钢管及腹板填充C50微膨胀混凝土,采用泵送法施工。介绍对C50钢管混凝土进行的配合比试验,并研究其限制膨胀率等各项性能,以确定钢管内C50微膨胀混凝土的配合比。  相似文献   

9.
钢管混凝土拱桥在压力灌注钢管内混凝土过程中,钢管受力十分复杂,对于其安全性必须引起重视。该文以上海浦东长清路川杨河桥为例,介绍了其拱肋及内部加劲构造,建立组合有限元模型,分析了拱肋钢管在灌注过程中的混凝土压强作用下的受力情况,并对几种加劲构造的作用作了分析,在此基础上对设计和施工中应注意的问题作了小结。  相似文献   

10.
脱黏对桁架式钢管混凝土拱桥受力性能的影响   总被引:3,自引:0,他引:3  
采用平面应变理论推导了轴向压力、温度荷载、收缩应变作用下钢管和核心混凝土界面拉应力的计算公式;提出了钢管混凝土拱桥完全脱黏的计算模型,分析了脱黏对桁架式钢管混凝土拱桥内力、刚度和面内极限承载力的影响;提出了采用内法兰构造在有限点限制钢管与核心混凝土相对滑移的脱黏对策,并以茅草街大桥实测数据对内法兰构造的有效性进行了验证。结果表明:脱黏使桁架式钢管混凝土拱桥钢管内力增大,结构刚度降低,面内极限承载力下降;在有限点设置内法兰构造使得脱黏之后桁架式钢管混凝土拱桥的受力性能与黏结良好时比较接近。  相似文献   

11.
HC分析仪是摩托车等车辆排放分析的主要仪器, Rosemount 400A型HC分析仪采用火焰离子化方法可连续测量样气中的HC浓度,分析仪的传感器是1只燃烧炉,其结构如图1所示,炉内火焰由燃气和空气来维持,采样气流经调节后通过火焰,在火焰内部,样  相似文献   

12.
通过使圆形钢管的内孔扩胀变形,可以实现很高的吸能效果。有限元仿真分析表明,钢管扩胀变形的单位行程吸收能量大,阻力恒定,对碰撞角度误差不敏感,适合于用作汽车正面碰撞吸能。在某轻型客车上安装钢管进行的碰撞试验验证了其优异的吸能效果。  相似文献   

13.
钢管混凝土拱桥以其独特的工作特性对钢管及混凝土材料提出了更高要求,其计算也不同于常规的拱桥,其独有的特点也导致了在我国的快速发展,存在的问题也逐渐予以体现。  相似文献   

14.
辛征刚 《隧道建设》2020,40(1):43-49
为研究上海市田林路下穿中环线新建工程管幕-箱涵穿越段所采用的内插型锁口的可行性与安全性,在其临近位置开展内插型锁口管幕群顶进试验,并结合数值模拟方法对管幕钢管自身刚度、锁口刚度与管幕顶进顺序、管幕掘进与姿态控制技术、管幕钢管顶进减摩与顶力控制4大方面进行研究。通过等比例试验及数值模拟,结果表明: 1)通过内插型锁口相互连接,管幕钢管的姿态可控、闭合顺利、止水良好; 2)采用内插型锁口的管幕钢管具备良好的自身刚度; 3) 试验采用的特种管幕掘进设备、纠偏系统及后配套系统能够精准地控制管幕钢管顶进精度,可将轴线偏差控制在±1 cm; 4) 内插型锁口能发挥显著的锁口导向作用。  相似文献   

15.
该文针对钢管混凝土拱桥拱肋灌注中爆管事故频发问题,采用平面简化计算方法与空间有限元方法对桁架式钢管混凝土系杆拱桥灌注钢管及缀板腔内混凝土时拱肋的受力特性进行了分析。分析表明:桁架式拱肋在灌注钢管内混凝土时一般可满足要求,而在缀板腔内混凝土灌注过程中,钢管与缀板交界处以及缀板横向中心位置始终存在较大的应力,而泵送压力太小则又将施工工序复杂化,建议对缀板腔进行型钢加劲。  相似文献   

16.
为了研究矩形钢管混凝土组合桁梁桥这种主梁由矩形钢管混凝土桁架和混凝土桥面板组成的新桥型的力学性能,以中国首座矩形钢管混凝土组合桁梁桥为对象开展了实桥试验。试验桥孔跨布置为24 m+40 m+24 m,结构体系为连续刚构。试验采用400 kN加载卡车3辆,共进行了3个荷载工况12个加载步的加载,对试验桥的整体力学性能、矩形钢管混凝土杆件力学性能以及桥面板有效宽度进行了研究。试验结果表明:在荷载效率为1.90~3.05的超载工况下各控制杆件的轴力-应变及荷载-位移实测数据线性关系显著,试验桥在加载过程中始终处于良好的弹性工作状态;实测受压钢管混凝土下弦杆钢管与管内混凝土荷载的分配符合二者的轴向抗压刚度比例关系;由于矩形钢管混凝土管壁内设置了纵向PBL加劲肋(开孔钢板加劲肋),其在开孔区域形成混凝土榫,大幅提高了矩形钢管混凝土杆件的抗拉刚度,使其可达受压杆件刚度的80%;两主桁之间桥面板实测有效宽度与既有文献研究结果符合良好,且剪力滞效应在节点处比节间处表现得更为明显。  相似文献   

17.
宜春袁州钢管混凝土拱桥主跨设计及施工工艺   总被引:1,自引:1,他引:0  
钢管混凝土结构兼有钢结构和混凝土结构的优点,借助内填混凝土可增强钢壁的稳定性,钢管又对核心混凝土产生套箍约束作用,使混凝土处于三向受压状态,大大提高其抗压强度和变形能力。钢管混凝土拱桥造型设计新颖、外形美观,近几年在城市桥梁建设中被广泛采用。  相似文献   

18.
4 化油器回火 4 1 化油器回火故障特征 所谓化油器回火,就是在发动机运转时,火焰突然从进气管向化油器部位返回而出现爆炸燃烧的现象。实质上就是发动机工作行程后期,气缸内燃料仍在燃烧,至排气行程后期还未烧完,此时进气门打开,燃烧火焰就与化油器进入的新鲜混合气相遇,进行猛烈的燃烧并发出响声。这是发动机使用中的常见故障之一,若不及时排除,会影响其使用性能。  相似文献   

19.
为研究不同钢内衬加固钢筋混凝土管涵的加固效果及其力学特性,对不加固的钢筋混凝土管、10 mm厚平钢管内衬加固钢筋混凝土管、波纹钢管内衬加固钢筋混凝土管3个试件进行两点加载试验,测试P—Δ曲线及截面应变。试验结果表明:采用直接加固方式时,波纹钢管内衬加固钢筋混凝土管、平钢管内衬加固钢筋混凝土管的极限承载力分别比未加固圆管的极限承载力提高240%、22%;加固形成的钢筋混凝土—内填混凝土—内衬波纹钢管截面为部分组合截面;钢筋混凝土—内填混凝土—内衬平钢管截面接近非组合截面,其受力过程与未加固管截面受力过程相似。  相似文献   

20.
为研究钢管砼抛物线拱桥在受均布竖向荷载作用下考虑位移影响时的时变可靠度,利用差分法求得拱面内临界荷载并建立考虑徐变的极限状态函数,采用MATLAB软件结合中心点法,得到钢管砼拱面内承载力可靠度指标随时间的变化。结果表明,砼徐变会降低钢管砼拱面内稳定临界承载力可靠性指标;加载龄期对结构可靠性的影响较小;考虑位移影响时钢管砼拱面内稳定临界承载力和可靠性会有一定增加,设计时应充分考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号