首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
动力蓄电池是电动汽车的动力来源,其热管理系统对其工作性能至关重要。相变材料由于有很大潜热储存能力故在蓄电池热管理系统中有不错的应用前景。叙述了现今国内外学者对锂离子蓄电池包热管理系统中相变材料的应用研究进展。  相似文献   

2.
动力蓄电池是电动汽车的动力来源,其热管理系统对其工作性能至关重要。相变材料由于有很大潜热储存能力故在蓄电池热管理系统中有不错的应用前景。叙述了现今国内外学者对锂离子蓄电池包热管理系统中相变材料的应用研究进展。  相似文献   

3.
电池组在高环境温度下以高倍率放电时,电池组温度过高、温差大,极易引发安全问题。笔者针对这一问题设计了一种新的耦合式电池热管理系统。以采用纯石蜡冷却模型作为初始模型,首先探讨不同膨胀石墨质量分数的复合相变材料对于电池组热性能的影响,得出:在30℃的环境温度下,电池组以4C倍率放电时,采用EG质量分数为12%的复合相变材料对电池组进行冷却最优。在最优复合相变材料的基础上引入液冷系统,构建克里格近似模型,采用NSGA-Ⅱ遗传算法对耦合系统寻优,得出的预测结果精度较高误差最大仅为0.21%。利用算法寻优得出的最优解与初始模型相比,电池组最高温度下降5.29℃降幅为11.46%,最大温差下降0.12℃降幅为54.09%。结果表明:相变材料与液体冷却耦合热管理系统对电池组控温效果显著。  相似文献   

4.
本文提出了一种将复合相变材料(石蜡(PA)混合膨胀石墨(EG))与空冷相耦合的电池热管理方案(简称APE-BTMS),该系统中电池中部采用PA/EG进行冷却,电池的上下端采用空冷(空气流速为1.23 m/s)。APEBTMS的主要目的是,将电池的工作温度冷却到最佳温度范围的同时,减轻整个电池热管理系统的质量。实验结果表明:APE-BTMS-45模型在相同的条件下展现了最佳的冷却性能;同时,基于COMSOL建立APE-BTMS数值模型,进行更加精细地轴向厚度和不同环境温度下对APE-BTMS冷却性能加以对比,经数值模拟结果进一步验证,APEBTMS-45在对比数据中具有最佳的冷却性能,并可最大轻量216.71 kg。本文的研究结果可为基于相变材料的电池热管理系统的设计开发提供参考和数据支撑。  相似文献   

5.
杨娜  仝义鑫  赵立军  王剑锋 《汽车工程》2021,43(8):1161-1167
为研究电池热失控传播过程中的热量传递路线,建立了由一维电化学模型、内短路模型、三维传热模型和副反应模型相耦合而形成的电池组热失控模型,并用针刺实验进行了验证;提出了一种基于相变材料和液体冷却的电池模组热管理方案,并分析了它对电池模组热失控传播的抑制作用.结果表明:所提出的电池热管理方案可使电池模组各个电池发生热失控的时...  相似文献   

6.
功率型锂离子电池具有功率密度高、充放电稳定性好、循环寿命长等特点,已广泛应用于电动汽车。随着功率输出的增加,发热的增加会显著影响电池性能,因此,电动汽车中锂离子电池的热管理非常重要。而基于热管的电池热管理系统具有结构紧凑、灵活、成本低、导热系数高等优点,本文讨论热管耦合风冷在锂离子电池热管理系统中的应用,来增强锂离子电池的热性能。  相似文献   

7.
针对动力锂离子电池数量众多、不易管理等问题,设计了基于RS485总线多横向均充管理系统。为避免单体电池过充电,根据目前电池管理系统的发展现状,通过构建闭环控制系统,利用单片机控制的灵活性,以模糊控制规则和三段式充电理论为基础,提出了基于分只同时均充理念的电池管理系统。试验表明,该系统实现了对单体电池的有效保护。  相似文献   

8.
陈耀阳 《时代汽车》2023,(20):139-141
随着电动汽车发展的热潮一浪卷一浪,我国电池管理技术趋于成熟。现在的产业链打通也为日后向更高层次的电池运用管理打下了坚实的基础。为解决电动汽车电池管理系统的问题,研究了一种基于电压、电流、温度和阻抗的电池管理系统。首先,分析了系统工作原理,确定了蓄电池电压和电流控制策略;然后,设计了一种新型电池充放电管理算法,并基于Matlab开发出了上位机软件;最后,对所设计的系统进行验证。  相似文献   

9.
为解决车用锂离子动力电池在高强度工作过程中电池温度过高以及电池组温均性差等问题,需要对电池组设计合理的电池热管理系统(BTMS),以此提升电池组的冷却性能.首先阐述了热管理系统的常见冷却方式,分析了各种冷却方式之间的优缺点.随后针对应用最为广泛且最易实现的空气冷却方式,从冷却空气流型、电池排布方式、电池间距、冷却空气流...  相似文献   

10.
分析电动汽车常用的电池热管理设备的选型和布置的基本原则及布置方式。  相似文献   

11.
BMS系统是电动汽车中的核心系统,也是提供动力的主要部件,能够对电动汽车进行实时监控和在线监测,从而获取汽车电池系统温度、电流、电压等具体参数和相关信息.另外,BMS系统还能够对电池运行状态和电池组离散性进行科学控制,一旦电池组出现故障或潜在隐患,系统会自动发出报警信号,提醒相关人员采取措施进行处理.基于此,对BMS系...  相似文献   

12.
电动汽车电池组热管理系统的关键技术   总被引:15,自引:0,他引:15  
电池组热管理系统的研究与开发对于电动汽车的安全可靠运行有着非常重要的意义。本文分析了温度对电池组性能和寿命的影响,概括了电池组热管理系统的功能,介绍了电池组热管理系统设计的一般流程,并对设计热管理系统提出了建议。文章重点分析了设计电池组热管理系统过程中的关键技术,包括电池最优工作温度范围的确定、电池生热机理研究、热物性参数的获取、电池组热场计算、传热介质的选择、散热结构的设计等。  相似文献   

13.
为实现电池包热管理系统低能耗和高效率散热的目的,文章通过流体动力学(CFD)仿真及实验对某插电式混合动力汽车(PHEV)乘用车电池包热管理系统进行优化研究。电池包热管理系统采用液冷散热,流场压力损失设计目标值为27kPa。初始方案中,流场压力损失实测值约为60 kPa,CFD仿真分析表明,液冷系统流场进出口是产生压力损失的主要部件;采用增大进出口管径的方法对液冷系统进行优化,仿真和实验结果表明,优化后的液冷系统压力损失减小至26 kPa左右;液冷系统流场优化后,对电池包散热特性进行仿真和实验分析,结果表明,在67.6 kW工况下电池包最高温度为53.2℃,低于目标值55℃。综合分析可以得出结论,优化后的电池包液冷系统各项指标达到目标状态。  相似文献   

14.
电动汽车SOC估计算法与电池管理系统的研究   总被引:6,自引:0,他引:6  
在安时计量方法的基础上,采用基于折算库仑效率的卡尔曼滤波算法估计蓄电池荷电状态(SOC),并将此方法应用于HEV6580混合动力电动汽车镍氢电池管理系统。系统实现的功能包括:数据监测、数据显示、CAN通信、SOC估计、热管理和安全报警。经电池试验台模拟工况试验验证,电池管理系统各子系统达到设计要求且工作稳定。改进SOC估计方法解决了传统安时计量法不能估计初始SOC、难于准确测量库仑效率的问题,为电池管理系统稳定工作提供保证。  相似文献   

15.
本文探讨了新能源汽车的发展背景、趋势以及电池管理系统在其中的重要性。随着环保需求的提升和新能源汽车技术的进步,新能源汽车正逐渐成为未来交通的主流。电池管理系统,对电池的平稳、安全和高效运行至关重要。任务导向模式在新能源汽车电池管理系统教学中,有助于培养学生的实战和创新思路。通过设计实际任务,让学生在实际操作中掌握相关知识和技能,通过培养他们的协作和交流能力,来提高人才培养质量。  相似文献   

16.
17.
为提升高温环境下电源系统的综合效率,通过分析电动汽车热管理和能耗模型,提出一种考虑电池热管理的复合电源电动汽车功率分配控制策略,并在CATC、NEDC工况下分别与单一电源电动汽车和采用常规策略的复合电源电动汽车进行对比仿真。结果表明,相对于单一电源,采用复合电源方案的电动汽车电源系统能量回馈提升3.6%以上,综合能耗降低3.3%以上,电池最终温度下降3.51℃以上;相对于采用常规策略的复合电源电动汽车,考虑电池热管理的复合电源功率分配控制策略提升超级电容参与度,使复合电源系统能量回馈提升1.8%左右,综合能耗降低1.2%左右,电池最终温度降低1.25℃左右,从而验证了该策略的有效性。  相似文献   

18.
为提升电池热管理系统(BTMS)散热效果,采用计算流体力学(CFD)和基于快速非支配排序遗传算法(NGSA-II)的多目标优化相结合的方法设计优化了一种新型液冷板模型。通过电池实验,得到不同放电倍率下单体电池产热量。以通道夹角、通道宽度、冷却液的质量流量为设计变量,平均温度、温度标准差和压降为目标函数,采用拉丁超立方体抽样(LHS)方法,在设计空间中选取了35个设计点,利用响应面近似模型(RSM)拟合出目标函数的表达式。结果表明:在5C放电倍率下,优化后液冷板的散热性能得到有效提升,与初始模型相比,液冷板的平均温度和温度标准差分别下降了11%、51.2%,压降仅增加了3.3Pa。  相似文献   

19.
基于双CAN总线的电动汽车电池管理系统   总被引:3,自引:0,他引:3  
根据所选用的锂离子动力电池组单体只数多、位置分布比较分散的特点,设计了基于双CAN总线的分布式电池管理系统(BMS),系统由若干采样模块和一个主控模块组成.介绍了电池信息采集和双CAN通信模块的硬件设计、电池荷电状态(SOC)的估算策略以及电池组安全管理策略.  相似文献   

20.
《汽车与配件》2009,(19):7-7
昭和电工宣布,大型锂离子充电电池用石墨负极材料“SCMG”开发成功,并已开始销售。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号