首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黎明 《摩托车》2012,(6):36-40
凸轮轴是配气机构中的重要驱动件,由它来按照配气相位定时地开启和关闭进、排气门。气门的升程规律决定了凸轮的形状,其凸轮的外形由基圆和升程型线两部分组成。配气机构运行于基圆部分时,气门是关闭的,运行到升程型线部分时,气门则按型线的规律上升或下降。采用一根凸轮轴来驱动进  相似文献   

2.
轶名 《摩托车》2005,(3):40-43
三、配气机构1.顶置凸轮轴配气机构凸轮轴是配气机构中的重要驱动件,由它来按照配气相位定时地开启和关闭进、排气门。气门的升程规律决定了凸轮的形状,其凸轮的外形由基圆和升程型线两部分组成。配气机构运行于基圆部分时,气门是关闭的,运行到升程型线部分时(如图5所示),气门则按型线的规律上升或下降。凸轮升程磨损超过其使用极限值时,会使配气相位的开启角度缩短,发动机的速度特性会向低速方向移动,其动力性和经济性就相应变差。因此在拆检过程中,应注意检测凸轮升程的高度,一旦磨损到使用极限值,必须更换新件。(1)在更换凸轮轴时,还需检…  相似文献   

3.
一般以1°间隔测量整个凸轮(0~360°)的升程(基圆部分可以取大一点的角度间隔),获得凸轮的升程误差值△hi。△hi可由图4关系导出:△hi=his-hi=yis-yi,最后画出如图5所示的凸轮升程误差曲线。  相似文献   

4.
广本新雅阁(2.4L)的i-VTEC系统是VTEC VTC组成的高智能化气门正时和气门升程电子控制装置,结构框架图如图1所示。VTEC系统可以控制发动机在低转速区域和高转速区域时的气门正时和气门升程;VTC系统能根据发动机负荷对气门相位进行连续控制(可变凸轮相位)。所谓i-VTEC系统就是融合了上述两项技术的新系统。通过VTEC对气门升程,VTC对气门重叠(进气门和排气门同时开启的状态)进行周密的智能化控制,从而使大功率、低油耗和低排放这三个具有不同要求的特性都同时得到提高。其排放达到了欧-Ⅲ标准。  相似文献   

5.
下面来详细地分析一下喷油器的工作过程。 图4的左部上图是喷油脉冲和三通阀升程曲线。图4的左部中图是控制压力变化曲线,点划线表示空腔(A)的压力,实线表示控制腔(B)的压力。图4的左部下图是喷油嘴针阀升程曲线。整个喷油器工作循环可以分成六个阶段: (1)喷油嘴开启前阶段 这个阶段从喷油器通电、三通阀开始升起,到喷油嘴针阀开始升起为止。 首先看三通阀升程曲线。喷油脉冲施加到喷油器上之后,三通阀立即开始  相似文献   

6.
一、对解放牌CA-10B发动机圆弧凸轮的分析1.解放牌CA-10B发动机的凸轮轮廓是由缓冲段加上四个圆弧(包括基圆)构成并左右对称的。由于凸轮轮廓曲率半径变化不连续,造成挺杆及气门加速度突变,加速度曲线不连续,因此不容易满足气门机构高速工作平稳性的要求。但是由于气门运动学参数选择适当,既有足够的缓冲段升程贮备,而且又有正加速度段宽度很宽,正加速度形状设计合理,所以在发动机转速n=3000转/分以下时,还能保持良好的动态气门运动规律。  相似文献   

7.
<正> 对于研究工程师来说,发动机部件运动的测量同样是一项重要的工作,例如:实际气门升程对曲轴转角的函数的气门运动规律的测量。这种研究是为了寻找出最佳凸轮型面,就是说气门要很快地开闭,而且升程要大。可惜,此条件常常导致具有使气门跳  相似文献   

8.
可变气门机构是进气门升程及配气正时可变的气门机构,如图1所示.采用VTEC的发动机,其凸轮轴除原有控制进、排气门的一对凸轮外,还增加了一个较高升程的凸轮C.此外,由凸轮推动的摇臂被分成三部分:主、中间和副摇臂.三根摇臂内部有一根液压控制的活塞锁栓,ECM控制液压系统,推动活塞使三根摇臂锁成一体时,则由高升程的凸轮进行驱动,从而可改变气门的开启程度,如图2所示.低速时,主与副摇臂未与中间摇臂相连,但分别由A、B两凸轮驱动,在不同时间与升程下驱动,副凸轮B升程较小,故只能使进气门的开度较小.此时虽然中摇臂也随中间凸轮运动,但在低速状态下对气门开启不起任何作用.高速时,如图3中箭头所示,正时活塞由于液压作用而移动.因此,主、副与中间摇臂就被两个同步活塞贯穿,使三个摇臂连成一体一起移动.在此情况下,所有的摇臂均由C凸轮驱动,使气门开启和关闭,并改变气门正时和升程,使之适应发动机的高速工况.  相似文献   

9.
刘晓 《摩托车》2009,(4):I0001-I0009
V4发动机的凸轮轴大家已经了解了一些,从图1可以看出,在气门间隙的测量过程中凸轮轴的中心点到D和E之间的基圆部分它们的加工半径尺寸是一样,这样从维修人员的角度来说,在凸轮基圆上的任何一个点都可以对气门间隙进行测量。  相似文献   

10.
<正>如图1所示,传统发动机进排气门的打开和关闭由凸轮的凸缘形状决定,当凸轮处于基圆时,气门在气门弹簧的作用下处于关闭状态;当凸轮处于工作段时,气门挺杆沿着凸轮的外延移动,气门处于打开状态。所谓的可变气门正时(VVT),其实就是通过凸轮轴的旋转,使凸轮轴上的凸轮工作段的时间提前到达或滞后到达,但整体的工作时间不会改变。而为了实现可变气门升程  相似文献   

11.
(上接2008年第5期) b)凸轮轴 凸轮轴是配气机构中重要的驱动件,由它来按照配气相位定时开启和关闭进、排气门.气门行程规律决定了凸轮形状,凸轮外形由基圆和行程型线2部分组成.  相似文献   

12.
2012年,Hyundai汽车集团推出1款采用连续可变气门升程(CVVL)机构的发动机。该发动机是专为中型轿车设计的直列4缸2.0L汽油机,具有燃油耗低、性能高及响应快的特点。CVVL机构是一种6连杆机构,具有结构紧凑和坚固耐用的优点。相比传统机型,CVVL发动机的燃油经济性提高7.7%,最大功率提升4.2%。生产CVVL发动机最具挑战性的问题是发动机各气缸气门升程的偏差。为了调整气门升程的偏差,设计了气门顶垫片和调节螺钉。通过测量气门顶部高度和凸轮支架总成的蹄形升程,选择垫片厚度。调节螺钉是调整气门升程偏差的辅助装置。开发了适用于CVVL发动机工厂装配线的气门升程偏差诊断系统,并用测试装置直接测量气门升程。该诊断系统位于配气机构装配台后,可以实时监测气门升程的变化,并给出装配系统的快速反馈。  相似文献   

13.
林静 《汽车与配件》2013,(13):32-35
发动机开发的主要问题是降低油耗和CO2排放,未来废气排放法规也要求进一步降低排放。目前虽然人们在电动汽车和燃料电池汽车开发上做了大量的工作,车辆内燃机仍然是重要的驱动源。内燃机的效率必须不断提高。发动机优化过程中非常重要的问题有:降低充气循环、充气循环的优化、残留废气量的影响、特别是在部分负载的情况下,在压缩行程和测量新鲜空气量开始时的温度控制。需要气门机构具有可变性,以实施这些策略。从纯配气相位调整和部分可变气门升程到全部可变气门升程,完  相似文献   

14.
发动机进、排气门是保证发动机工作性能可靠性、耐久性的重要零件,是专门对发动机充量交换过程的控制,其特性参数主要是三个:气门开启相位、气门开启持续角度(即气门保持升起持续的曲轴转角)和气门升程。这三个特性参数对发动机性能、油耗和排放有重要影响。通常将气门开启相位和气门开启持续角度称为气门正时。随着发动机负荷和转角的改变,这三个特性参数(特别是进气门开启相位和开启持续角度)的最佳选择是根本不同的。 在传统的发动机中,由于这二个特性参数在运行过程中不能改变。过去往  相似文献   

15.
可变气门升程技术能够实现在不同工况时为发动机匹配合适的气门升程,是改善发动机动力性能、提高燃油效率和减少有害排放的一种重要途径。介绍了可变气门升程技术的类型、实现途径及应用现状,分析了典型可变气门升程机构的结构及工作原理,并对其特点进行了比较。  相似文献   

16.
1液压挺柱工作机理分析 众所周知,液压挺柱是介于凸轮轴凸轮和气门之间的无间隙传力机件。从传力方式上可分为直推式(无摇臂,气门升程等于凸轮升程)和摇臂式(摇臂有大于1的杠杆比,气门升程大于凸轮升程)两种。  相似文献   

17.
利用GT-POWER软件建立某型号天然气发动机模型,研究减压气门的运行参数(减压气门相位、气门升程以及气门包角)在单因素和多因素条件下对发动机燃烧制动性能的影响。结果表明,点火时刻为上止点前130°时,在上止点前40°前燃烧基本结束;随着气门包角的增加,制动扭矩不断增加;减压气门升程越大,制动扭矩峰值越大,但是减压气门的最大升程受压缩间隙的限制。  相似文献   

18.
在上期我们探讨了可变气门技术之“可变气门升程”部分。这次我们接着上期的话题.说说可变气门正时技术的另一部分——“可变配气门相位”。  相似文献   

19.
3.通过大幅度降低进气门升程控制涡流比 本田公司VTEC-E系统实际上是一种可变进气门电子控制系统,用于4气门稀薄燃烧汽油机,有一个主进气门和一个副进气门,见图5。主进气门的升程为8mm,不可变。副进气门可有两种气门升程:发动机低工况时,副进气门升程只有0.65mm,通过气门和气门座之  相似文献   

20.
利用三维仿真软件Ansys Fluent建立了GDI汽油机的仿真计算模型,就变气门升程耦合不同喷油策略对缸内气流运动和混合气形成的影响进行了模拟计算。结果表明,与大气门升程工况相比,小气门升程工况的缸内湍流运动强度、燃油蒸发和湿壁情况以及点火时刻混合气质量都明显改善;在小气门升程工况,采用两段喷油会缩短油气混合时间,过度推迟二次喷油时刻会恶化混合气质量和燃油湿壁情况;在大气门升程工况,两段喷油会改善混合气均匀性,随着二次喷油时刻推迟,燃油蒸发量增加,湿壁情况加剧,混合气质量得到改善;小气门升程工况下采用二次喷油时刻为470°曲轴转角,前后两次喷油量比例为7∶3的两段喷油方案在燃油蒸发和湿壁以及点火时刻缸内混合气质量这几个方面的效果都很好,是最合理的方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号