首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
结合现代有轨电车车辆-轨道耦合动力学子模型、轮轨多点接触子模型与Archard材料磨耗子模型,建立了车轮磨耗预测分析模型。与相关参考文献结果进行对比,验证了本文建立模型的准确性。利用该磨耗预测模型计算分析了轨距加宽对现代有轨电车通过小半径曲线轨道时车轮磨耗的影响。结果表明:在相同的线路条件下,独立车轮轮缘磨耗大于非独立车轮,差值最大为0.94 mm,而两种车轮踏面磨耗情况较为接近;曲线半径较小的线路,轨距加宽为10~15 mm时车轮轮缘磨耗较小,而轨距加宽为15 mm时车轮轮缘磨耗较为均匀。研究结果可为现代有轨电车车辆维护提供有益参考。  相似文献   

2.
随着车辆运行里程的增加,车辆稳定性由于轮轨匹配关系的不断恶化而下降.通过镟修不同轮缘厚度车轮型面改善车辆运行性能,但不同轮缘厚度的车轮型面与钢轨匹配下的动力学性能都是未知数.根据LMB系列4种不同轮缘厚度踏面和CHN60匹配,对轮轨接触点位置的变化、接触区域分布进行仿真计算,通过计算接触宽度、接触集中度,分析由于轮对型...  相似文献   

3.
建立了车辆-轨道-路基耦合系统振动分析模型,考虑轨道不平顺激励及轮轨接触区滤波,模拟了轮轨间随机振动垂向作用力。建立了车轮三维实体有限元模型,考虑了名义接触点、轮缘和车轮外侧3个轮轨接触位置,模拟了车轮系统在随机振动垂向荷栽作用下的高频振动特性。分析结果表明:当列车以200km·h^-1行驶在有砟轨道上时,轮缘的振动加...  相似文献   

4.
利用Creo和Workbench建立了无内胎钢制车轮仿真分析模型,在轮缘和轮辐通风孔处增加加强筋,对车轮结构进行强化,采用名义应力法计算弯曲和径向疲劳寿命.仿真分析结果表明:加强筋提高了车轮的径向疲劳性能,虽导致车轮弯曲疲劳性能下降,但疲劳寿命仍远大于标准要求.  相似文献   

5.
独立旋转车轮动力学特性分析   总被引:5,自引:0,他引:5  
同传统的整体轮对相比,独立旋转车轮由于理论上不存在轮轨间的纵向蠕滑,在理想化的、无激扰的线路上具有较高的临界速度和较好的曲线通过性能。但在实际运用中,正是由于其缺少纵向蠕滑力的特点,使轮对在直线轨道上的对中性能下降而产生轮缘接触和曲线上只能靠轮缘导向。介绍了独立旋转车轮的运用和发展,并通过计算机模拟提出独立旋转车轮有待解决的问题。  相似文献   

6.
重载货车车轮磨耗仿真   总被引:1,自引:0,他引:1  
以装用转K6型转向架的C80型货车为例,在SIMPACK软件中建立车辆动力学模型,采用LM型车轮型面和75 kg.m-1级钢轨型面匹配,并根据大秦线实际情况建立线路模型。基于FASTSIM算法和Zobory踏面磨耗模型,对重载货车车轮磨耗进行仿真分析,并与现场实测结果进行对比。研究结果表明:磨耗主要发生在踏面上-50~45 mm范围内,轮缘处磨耗最大,在轮缘根部磨耗最小;随着运营里程的增加,轮缘和滚动圆处的磨耗速度变慢;踏面垂直磨耗量的仿真结果小于现场实测结果;车轮磨耗后,车辆临界速度下降,空车临界速度下降13~18 km.h-1,重车临界速度下降2~8 km.h-1。  相似文献   

7.
轮轨共形接触的有限元分析   总被引:1,自引:0,他引:1  
建立了机车在曲线通过时,车轮轮缘贴靠钢轨过程的轮轨共形接触计算模型,采用有限元参数二次规划法求解轮轨接触问题,得出了不同接触位置、不同载荷工况下的轮轨接触力,详细分析了轮缘贴靠钢轨过程中接触力的变化规律,为解决轮轨磨耗问题提供了理论依据.  相似文献   

8.
以某正在运行的C0-C0轴式电力机车为研究对象,考虑了机车传动系统的影响,基于Archard磨耗模型,建立了电力机车的车轮磨耗计算模型,研究了恒速与起动工况下车轮的磨耗,根据某实际线路计算车轮磨耗,并与实测数据进行对比,研究了机车正常运行过程中出现的轮缘非正常磨耗。分析结果表明:当车辆恒速运行2.6×105 km,牵引力由40kN增大到120kN和由120kN增大到200kN时,磨耗分别增加了0.74、1.74mm,因此,随着牵引力增大磨耗急剧增加;机车起动过程中增加牵引力可以获得更大的加速度,随着牵引力增大,蠕滑率明显增大,因此,增加牵引力可节约运行时间,但同时会产生更大磨耗;通过与车轮磨耗实测数据对比,车轮磨耗计算模型较为准确,在踏面处仿真计算结果与实测结果具有很好的一致性;由于车轮磨耗计算模型未考虑材料的塑性流动与道岔的影响,在轮缘处的仿真结果与实测结果有一定的差异;降低二位轮对横动量和轨侧润滑能够大幅降低车轮磨耗,当二位轮对横动量由15mm降低为10mm时,二位轮对累积磨耗降低了15.4%;轨侧润滑后一~三位轮对最大累积磨耗分别降低了13.40%、21.32%、6.46%。  相似文献   

9.
我国铁路线的曲线较多,机车通过曲线时,车轮与钢轨之间存在不同程度的磨耗问题,尤其是随着列车曲线通过速度的不断提高,机车车轮轮缘磨耗日益严重.根据大量实测数据表明,机车车轮平均镟修量在直径方向达到32 mm,使得踏面处有用金属浪费严重.针对镟修优化问题,提出了以磨耗Ⅲ期型面作为镟修型面.该镟修型面使得车轮直径镟修量减少6 mm,且相比JM-3型面可多镟修一次,轮对寿命可达到173万公里,寿命延长约16%.同时,该方案使得轮轨接触匹配较好,进一步减缓车轮的磨耗.  相似文献   

10.
车轮与曲线钢轨接触的有限元分析   总被引:2,自引:2,他引:0  
分析车轮与曲线钢轨接触的应力和变形,借助于Hypermesh有限元软件,建立了磨耗后的轮轨全接触和轮轨轮缘贴靠的轮轨三雏弹塑性接触有限元模型.并应用Marc软件进行了充分的非线性弹塑性接触计算,整理并分析接触位置,以及接触Mises应力数据.此外根据计算结果,全面分析了接触斑和Mises应力的变化规律,得出了轮轨在不同...  相似文献   

11.
建立包含橡胶件的弹性车轮有限元模型,基于Abaqus软件仿真模拟弹性车轮组装过程.分析橡胶材料的力学特性,采用Mooney-Rivlin本构模型模拟其超弹性特性,考虑橡胶件大变形且不可压缩特性,建立多个接触关系和变步长反复迭代方法以保证计算收敛和缩减计算规模,研究压装过程各部件应力变化情况.仿真结果显示:压装完成后弹性车轮整体最大von-Mises应力为129.1 MPa,出现在压环与轮心过盈配合面处;最大径向应力为143.3 MPa,出现在轮心辐板圆弧过渡处.压装完成后弹性橡胶件最大von-Mises应力为8.1 MPa,径向应力均处于压缩状态.压装完成后轮毂与橡胶接触面应力在边缘位置处较大,轮缘侧应力略大于另一侧,且边缘位置应力大于中心位置处应力3倍.压装过程中轮心辐板位置最大应力随压装进行逐渐变小,最大应力位置逐渐靠近辐板厚度较薄的圆弧过渡处.压装应力作为车轮运营过程中的预应力.  相似文献   

12.
将AC-13,AC-16和AC-20等3种沥青混合料制备成不同厚度的车辙板芯样试件,采用28.5 mm压头进行了单轴贯入试验,研究了不同试件高度对沥青混合料的抗剪强度性能的影响。结果表明:当3种沥青混合料试件高度分别等于或大于5 cm,6 cm和7 cm时,抗剪强度和剪切应变趋于常数,不再受试件高度变化的影响。结论是所研究的3种级配沥青混合料,将单轴贯入试验的试件厚度采用车辙试验确定出的与最大公称粒径相匹配的结构层厚度是合理的。  相似文献   

13.
轨道车辆轮对是否需要镟修的传统测量方法操作繁琐,不利于日常检修。利用轮缘厚度及踏面高度两个参数设计了能同时对轮对踏面磨耗量超限和轮对轮缘磨耗量超限做出灯光提示的接触式便携警报装置,给出了机械设计方案和针对轮对踏面及轮缘磨耗量超限的判断方法,并对警报装置测量误差进行了分析。该装置操作方便,能可靠地对轮对是否需要镟修作出判断。  相似文献   

14.
轨道车轮的振动声辐射瞬态特性分析能够直观反映车轮结构的时域振动响应和时域声辐射特性.利用有限元/瞬态边界元法的计算机仿真技术,对S形辐板车轮在时域下进行振动及声辐射特性分析.研究结果表明:踏面和辐板的轴向位移响应级基本一致,且轮辋和辐板之间轴向振动存在耦合关系;踏面、轮辋和辐板轴向位移响应级的变化趋势一致,具有类似于"拍"的周期特性;在车轮轴线上距离车轮30m处的声压集中在60~80dB,且随时间的增加整体缓慢上升,再趋于平稳;声压主要分布在3 500Hz以下的频段.研究结果为瞬态声辐射仿真技术在车轮振动声辐射特性研究中的应用提供参考.  相似文献   

15.
以某款弹性车轮及其原型普通车轮为研究对象,在考虑车轮旋转带来的移动荷载效应和陀螺效应的前提下,应用2.5维结构有限元法和2.5维声学边界元法预测车轮在给定轮轨粗糙度激励下的振动和声辐射;针对40、80和120 km·h-1三个运行速度,分析了弹性车轮的降噪机理,研究了弹性车轮橡胶层的材料参数对弹性车轮降噪效果的影响。研究结果表明:车轮旋转使得原本非0节径模态频率处的声功率峰值分叉为2个峰值,其中一个峰值频率比原模态频率高,另一个峰值频率比原模态频率低,2个峰值频率差近似等于车轮的旋转频率乘以2倍的模态节径数;在所考虑的工况下,车轮旋转对车轮声辐射的影响最高达3.2 dB(A),因此,在预测车轮的声辐射时,必须考虑旋转对预测结果的影响;如果橡胶弹性模量太小,则轮箍容易振动,从而有可能辐射比普通车轮更高的噪声;从车轮声辐射的角度,橡胶弹性模量存在一个最佳值,在这个值下,弹性车轮的声功率最低,且低于原型车轮的声功率10 dB(A)以上;增加橡胶阻尼总是有利于车轮噪声的控制,但增加阻尼产生的降噪效果随橡胶弹性模量的增大而降低;对于同一弹性车轮,随着运行速度的提升,相对原型普通车轮的降噪效果不断降低,速度从40 km·h-1增大到120 km·h-1,降噪效果降低达4 dB(A)以上。   相似文献   

16.
山区公路混凝土护栏碰撞特性仿真分析   总被引:15,自引:1,他引:14  
为探明山区公路上常用的间断式混凝土护栏及连续式混凝土护栏的碰撞特性,基于动态显式有限元方法及VPG软件,建立了完整的汽车-护栏-乘员-座椅-安全带一体化模型,对四种典型山区公路护栏进行了碰撞仿真分析。发现汽车撞击间断式混凝土护栏时,出现混凝土墩拌阻车轮的现象,甚至出现汽车的右前轮被护栏完全刮脱的情况,不仅假人头部及胸部遭受剧烈冲击,而且驾驶室变形严重;而汽车撞击连续式混凝土护栏时,车辆的左后轮出现了明显的抬高现象,表明车辆存在倾翻的趋势,但车辆尾部的高度变化曲线表明,车辆左后轮在抬高到一定高度后,将不再继续抬高,并逐步返回地面,说明车辆尾部的高度变化趋势是趋于稳定的;当护栏底部凸缘高为80mm时,出现前轮可以顺利爬上并溜下护栏斜坡,而后轮无法爬上护栏斜坡的现象;当护栏底部凸缘高为150mm时,则车辆的前、后轮均不能爬上护栏斜坡。结果表明,间断式混凝土护栏存在的主要问题是对失控车辆的诱导能力不足;连续式混凝土护栏存在的主要问题是护栏底部的凸缘太高,护栏的主要尺寸参数需要优化。  相似文献   

17.
针对早期轮轨滚动磨损变化过程难以通过无损手段进行表征的问题,提出了非线性超声技术对不同磨损程度的CL60车轮与U75V钢轨试样进行检测评估;建立了基于轮轨试样表面磨损特征的Murnaghan模型,并利用非线性超声有限元仿真,通过塑性变形层厚度变化情况模拟不同程度的摩擦损伤,分析了其相对非线性系数变化规律及其产生原因。试验结果表明:轮轨的早期磨损会导致材料表面产生塑性变形层,随着塑性变形的加剧,材料损伤将以微裂纹为主,车轮角加速度越大,轮轨间相对滑动作用时间越短,塑性变形层越薄,且CL60车轮较U75V钢轨磨损程度更为严重;CL60车轮试样在车轮角加速度分别为10、250、1 500 r·min-2时,对应的相对非线性系数分别为12.19、8.43、5.68,U75V钢轨试样在车轮角加速度分别为10、250、1 500 r·min-2时,对应的相对非线性系数分别为7.57、6.09、5.04,与CL60车轮试样相比,U75V钢轨试样的相对非线性系数变化缓慢。可知,相对非线性系数与塑性变形层厚度呈正相关,微裂纹产生的非线性效应比塑性变形层更强,相对非线性系数增幅更大,因此,可通过材料的相对非线性系数变化判断材料的磨损阶段。   相似文献   

18.
为了揭示车辆参数对列车碰撞爬车行为的影响规律,首先基于车轨耦合的基本思路,建立车辆模型和移动轨道模型,用非线性轮轨接触模型耦合车辆模型和移动轨道模型;非线性钩缓装置模型用于连接相邻的两个车辆模型;然后通过模拟两同型列车低速正面碰撞,获得了不同参数情况下车辆和轨道的动态响应;最后用车轮抬升量作为车辆碰撞爬车指标,分析了车轮抬升量对碰撞速度、车体质心高度和二系垂向刚度的灵敏度和相对灵敏度. 结果表明:在其他条件不变的情况下,当碰撞速度增大至27 km/h时,车轮抬升量陡增至36.5 mm;质心高度增大20%时,车轮抬升量增加41%;二系垂向刚度增大20%时,车轮抬升量减小16.6%;车轮抬升量随碰撞速度和质心高度的增大而增大,而随着二系垂向刚度的增大而减小;车轮抬升量对碰撞速度的灵敏度是非线性的;质心高度和二系垂向刚度的相对灵敏度分别为205%和?83%.   相似文献   

19.
大量半刚性基层路面结构运营未达到设计要求,主要原因是轴载换算存在不足。为了研究轴载换算中轮组系数的值,使用Apbi计算软件,考虑面层厚度、面层模量、基层模量的不同,计算弯沉与应力,根据推导而得的轮组系数公式计算得到轮组系数,结果表明:面层厚度、面层模量、基层模量对轮组系数的影响不大,但计算结果与规范相差较远。通过计算得出与规范不同的轮组系数,可为轴载换算的修正提供参考数据。  相似文献   

20.
滚动方向对CL60车轮材料接触疲劳损伤的影响   总被引:1,自引:0,他引:1  
为研究车轮滚动方向对车轮材料接触疲劳损伤的影响机制,利用WR-1滚动磨损试验机进行了车轮单向和双向运行滚滑磨损试验,使用光镜和扫描电镜分析了试验后车轮试样的表面磨损形貌、剖面疲劳裂纹形貌及磨屑尺寸,探究了换向运行工况下车轮表面损伤、裂纹扩展、磨屑尺寸随反向循环次数的演变规律. 研究结果表明:车轮表面损伤以起皮剥落为主,反向循环次数从1万次增加到12万次时,初始剥落逐渐消失,继而形成与原滚动方向相反的新剥落,相同循环次数下改变车轮滚动方向有利于减轻车轮材料疲劳损伤;车轮换向改变了表面微裂纹的扩展方向,形成4°~8° 的反向疲劳裂纹,并出现了裂纹扭曲和分支现象;单向滚动时,随循环次数增加,磨屑尺寸先增大后减小,反向后磨屑厚度先增大后减小,反向1万次时,磨屑厚度增大到10~12 μm,为单向时的两倍.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号