首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Pentamaran, a vessel with five hulls, can be an alternative for high-speed vessels due to its advantages, for instance, its excellent stability and seakeeping performance and broader deck space than an equivalent monohull with the same displacement. The destructive interference between the system of waves produced by the vessel's hulls might benefit the reduction of power consumption. This study investigated a Wigley hull form pentamaran model with five asymmetric and symmetric hull configurations and three variations of hull separation. The ship model was towed in conditions of fixed towing and calm water with Froude numbers(Fr) ranging from 0.55 to 1.00. A resistance analysis had been carried out to ensure proper comparison between the asymmetric and symmetric hull configurations. Results showed that total resistance coefficient of the asymmetries created different properties from the symmetries, that is, symmetries produced steadier trends than asymmetries. The hull separation variation caused a slight alteration in the total resistant coefficient(in magnitude) under the same configuration. Although not a single configuration outperformed the others in the entire range of Fr, three configurations were noteworthy as optimum models based on their Fr range. Moreover, a configuration of asymmetric hull with S/L = 0.22 could generate a constant destructive interference throughout the investigated Fr range.  相似文献   

2.
This paper presented the results of an experimental investigation into the resistance performance of a wave-piercing trimaran with three alternative side hull forms,including asymmetric inboard,asymmetric outboard,and symmetric at various stagger/separation positions.Model tests were carried out at the National Iranian Marine Laboratory(NIMALA) towing tank using a scale model of a trimaran at the Froude numbers from 0.225 to 0.60.Results showed that by moving the side hulls to the forward of the main hull transom,the total resistance coefficient of trimaran decreased.Findings,furthermore,demonstrated that the symmetry shape of the side hull had the best performance on total resistance among three side hull forms.Results of this study are useful for selecting the side hull configuration from the resistance viewpoint.  相似文献   

3.
三体船构型复杂,侧体布局对其阻力性能有很大的影响。基于计算流体动力学(Computational Fluid Dynamics, CFD)理论,利用SHIPMDO-WUT软件平台构建一种侧体布局自动优化方法。以某高速三体船为例,进行侧体布局的优化,结果表明:在4个不同弗劳德数下,优化船较母型船的兴波阻力均有所下降,总阻力也相应减小。得出在4个不同弗劳德数下总阻力最小的侧体布局方案,表明该方法的可行性与有效性。研究内容可为三体船减阻优化设计提供参考依据。  相似文献   

4.
三体船模型试验阻力分析   总被引:4,自引:2,他引:2  
该文在傅汝德数Fr=0.1~1.0范围内进行了三体船静水阻力试验,分析了侧体不同位置对剩余阻力的影响。文中将傅汝德数分成几个小区间,分别讨论了各个区间内最有利于减小剩余阻力的侧体位置,以期能在特定要求航速下选取出最佳的侧体位置,使得三体船的阻力性能有效提高。  相似文献   

5.
圆舭折角高速船型线参数化设计及其阻力性能分析   总被引:1,自引:1,他引:0  
船长傅氏数位于0.3~0.7之间时,排水型圆舭折角船型体现了较好的快速性和横摇缓和性能.在分析船体几何特征的基础上,基于NAPA设计软件编制了参数化型线设计程序,并利用Fluent软件对生成的不同几何模型进行了阻力性能分析,为圆舭折角船型型线的快速生成和折角线长度的确定提供了一定的借鉴.  相似文献   

6.
The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years.Trimaran vessels are currently of interest for many new high speed ship projects due to the high levels of hydrodynamic efficiency that can be achieved,compared to the mono-hull and catamaran hull forms.The purpose of this study is to identify the possible effects of using an unsymmetrical trimaran ship model with configuration(S/L) 0.1-0.3 and R/L=0.1-0.2.Unsymmetrical trimaran ship model with main dimensions: L=2000mm,B=200 mm and T=45 mm.Experimental methods(towing tank) were performed in the study using speed variations at Froude number 0.1-0.6.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was measured precisely by using a load cell transducer.The comparison of ship resistance for each configuration with mono-hull was shown on the graph as a function of the total resistance coefficient and Froude number.The test results found that the effective drag reduction could be achieved up to 17% at Fr=0.35 with configuration S/L=0.1.  相似文献   

7.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft(HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull(semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0o, 5o, 10o, and 15o. For each configuration, investigations are conducted with depth Froude numbers(Fr H) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

8.
五体船是继当代三体船之后提出的又一种多体新船型,该新船型付诸实用前必须对其兴波特性和侧体布局减阻设计进行研究。根据五体船各片体的科钦函数线性叠加和坐标变换原理,提出了基于片体科钦函数展开的分项算法和基于片体科钦函数叠加的整体算法求解多体船兴波阻力,得出了单体船、三体船、五体船通用的线性兴波阻力公式。应用CFD通用软件进一步分析五体船阻力及片体兴波干扰特性,提出了基于CFD模拟的自由面波形观测的五体船片体布局优化,对各种侧体布局下的五体船兴波特性直观地定性判定。根据综合兴波阻力线性理论计算和粘性流体动力CFD求解所得五体船阻力结果及其特性,提出具有工程实用意义的五体船优化构型方案。研究表明,势流线性理论计算和CFD求解五体船阻力的方法和所得五体船优化构型方案具有广阔的应用前景。  相似文献   

9.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0°, 5°, 10°, and 15°. For each configuration, investigations are conducted with depth Froude numbers (Fr H ) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

10.
本文利用模型试验和数值手段对比研究了深V型双断级滑行艇和无断级滑行艇的静水阻力特性,试验结果表明,双断级滑行艇在起滑之后的高速航行阻力及纵向运动稳定性上较无断级模型存在明显优势,在容积弗劳德数为5.21的航速下总阻力降低了19.2%。利用CFD软件CFX能够较好地捕捉到两模型之间的差异,计算结果表明,各断级之后的空穴均随着航速的提升而不断扩张,断级模型总体浸湿面积较无断级模型最大降低了33.4%,并且双断级使得艇底水动高压分布趋于均匀,有利于改善纵向运动稳定性。  相似文献   

11.
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1?0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.  相似文献   

12.
A computational method for improving hull form in shallow water with respect to wave resistance is presented. The method involves coupling ideas from two distinct research fields: numerical ship hydrodynamics and nonlinear programming techniques. The wave resistance is estimated by means of Morinos panel method, which is extended to free surface flow and considers the influence of finite depth on the wave resistance of ships. This is linked to the optimization procedure of the sequential quadratic programming (SQP) technique, and an optimum hull form can be obtained through a series of iterations giving some design constraints. Sinkage is an important factor in shallow water, and this method considers sinkage as a hydrodynamic design constraint. The optimization procedure developed is demonstrated by selecting a Wigley (C B = 0.444) hull and the Series 60 (C B = 0.60) hull, and new hull forms are obtained at Froude number 0.316. The Froude number specified corresponds to a lower than critical speed since most of the ships operating in shallow water move below their critical speed. The numerical results of the optimization procedure indicate that the optimized hull forms yields a reduction in wave resistance.  相似文献   

13.
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1-0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.  相似文献   

14.
三体船阻力模型试验   总被引:23,自引:0,他引:23  
介绍了高速排水型三体船模型静水阻力试验。在Froude数0.3-0.8范围内进行了系列试验,研究侧体位置对阻力的影响,详细分析了三体船各船体之间的兴波干扰、剩余阻力曲线特征和阻力成分。通过阻力换算,对三体船、双体船和单体船的有效功率进行了比较,结果显示出三体船在阻力性能方面的巨大潜力。  相似文献   

15.
基于RANS法和边界层理论预报三维船体阻力   总被引:1,自引:0,他引:1  
基于船体阻力成因和分类,应用二因次RANS法并结合EFD技术为研究手段,研究了船体各阻力成分和兴波波形,考虑边界层第一层网格高度对数值计算结果的影响,通过数值模拟计算和兴波波形比较,分析表明第一层网格无量纲高度y+值充分影响数值结果精度,总阻力在高傅汝德数下其数值误差有增大趋势,同一航速下摩擦阻力值随y+增加略微增大,剩余阻力值却明显减少,且自由面兴波随傅汝德数增大首部波高愈发明显,船中及尾部区域兴波向外扩散,船首尾肩部开尔文波系明显且波峰后移,其趋势与EFD波形一致,具有实用性。  相似文献   

16.
基于Fluent的船体界面阻力分析   总被引:1,自引:0,他引:1  
基于 Fluent对船体界面阻力进行仿真分析,采用 VOF的方法模拟船体在空气和水两相中的运动情况,获得不同航速下船体摩擦阻力和压差阻力的关系。考虑方型系数对于船体阻力的影响,建立多个方型系数不同的模型来实现Fluent仿真模拟,获得一定傅汝德数下船体方形系数与船体阻力的关系,得到船舶阻力相对优化的船型。该方法通过更加精确的建模可为船体型线减阻提供更多的依据。  相似文献   

17.
高速三体船的水动力学和船型研究新进展   总被引:6,自引:0,他引:6  
王中  卢晓平  詹金林 《船舶力学》2011,15(7):813-826
文章从三体船的兴波阻力数值计算、阻力特性分析、侧体布局对阻力影响,耐波性、操纵性,CFD和模型试验的应用等方面,对近20年来三体船的水动力和船型研究状况进行综述,重点介绍评述近年来三体船水动力和船型研究的新进展,总结归纳已有的研究和成果,提出需进一步探讨的问题和方向,得出了三体船的水动力和船型研究现状评估和未来发展趋势的若干结论。  相似文献   

18.
The simulations of the flow around a high-speed vessel in both catamaran and monohull configurations are carried out by the numerical solution of the Reynold averaged Navier–Stokes (RANS) equations. The goal of the analysis is the investigation of the interference phenomena between the two hulls, with focus on its dependence on the Reynolds number (Re). To this aim, numerical simulations are carried out for values of Re ranging from 106 to 108 for two different values of the Froude number (Fr = 0.30, 0.45). Wave patterns, wave profiles, limiting streamlines, surface pressure and velocity fields are analyzed; comparison is made between the catamaran and the monohull configurations. Dependence of the pressure and viscous resistance coefficients, as well as of the interference factor, on the Reynolds number is investigated. Verification and validation for both resistance coefficients and wave cuts is also performed.  相似文献   

19.
高速双体船阻力特征及其应用   总被引:2,自引:0,他引:2  
双体船的阻力特点是片体波系间相互有干扰。当处于有利干扰时,双体船的阻力小于两个单独片体的阻力之和。干扰的实质是片体间波系的横渡干扰。作者根据三种不同横剖面形状的高速双体船在不同间距比和排水量长度系数下的阻力试验资料,分析船型、间距比、排水量长度系数对阻力的影响,得到高速双体船的有利干扰起始点Fr0和片体间流动阻塞时的FrR0根据本文推荐的Fr0和FrR计算公式,可以选择恰当的航速、间距比和排水量长度系数以满足Fr0<Fr<FrR,使高速双体船处于低阻的有利干扰状态。  相似文献   

20.
高速三体船阻力性能研究   总被引:10,自引:1,他引:9  
郦云  卢晓平 《船舶力学》2007,11(2):191-198
对中体和侧体均为Wigley船型的高速三体船模在Fr=0.1~0.8时3个横向偏距、5个纵向偏距共15个状态进行了阻力试验,将高速三体船线性兴波阻力理论计算结果与模型试验结果进行了比较,并据模型试验结果分析了横向偏距和纵向偏距对兴波阻力系数的影响,其中各状态的形状因子(1 K)按普鲁哈斯卡法确定,对形状因子与偏距的关系也进行了探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号