共查询到3条相似文献,搜索用时 0 毫秒
1.
AbstractPath travel time estimation for buses is critical to public transit operation and passenger information system. State-of-the-art methods for estimating path travel time are usually focused on single vehicle with a limited number of road segments, thereby neglecting the interaction among multiple buses, boarding behavior, and traffic flow. This study models path travel time for buses considering link travel time and station dwell time. First, we fit link travel time to shifted lognormal distributions as in previous studies. Then, we propose a probabilistic model to capture interactions among buses in the bus bay as a first-in-first-out queue, with every bus sharing the same set of behaviors: queuing to enter the bus bay, loading/unloading passengers, and merging into traffic flow on the main road. Finally, path travel time distribution is estimated by statistically summarizing link travel time distributions and station dwell time distributions. The path travel time of a bus line in Hangzhou is analyzed to validate the effectiveness of the proposed model. Results show that the model-based estimated path travel time distribution resembles the observed distribution well. Based on the calculation of path travel time, link travel time reliability is identified as the main factor affecting path travel time reliability. 相似文献
2.
The present study analyzes the stochastic nature of travel time distribution under the uncertainty of traffic volume and the proportion of cars in the traffic stream. Stochastic response surface method (SRSM) is adopted for modeling the travel time variation under the influence of traffic composition and traffic volume. This model is applied to an uninterrupted urban arterial corridor of 1.7 km length in New Delhi. Video graphic data were collected for 2 days during morning hours between 8 AM and 12 noon and evening hours of 3–7 PM. License plate matching technique was used for measuring the travel time in the study area. This study focused on travel time variation of cars with varying traffic volume and proportion of car in the traffic stream. Linear regression analysis was carried out initially to know the functional relation and significance relation between the input and output variables, and then SRSM analysis was performed. Artificial neural network (ANN) is also considered to map the relation among travel time, traffic volume and composition of traffic stream. A comparative evaluation is made among ANN, SRSM and regression analysis. Results indicate that apart from traffic volume, the influence of car population is more on travel time variation than motorized two-wheelers. It is attributed to the smaller size and comparability better operating condition of motorized two-wheelers. Also, the ANN and SRSM models are more efficient for analyzing the stochastic relation between the response and uncertain explanatory variable than the regression model. 相似文献
3.
Arterial travel time information is crucial to advanced traffic management systems and advanced traveler information systems. An effective way to represent this information is the estimation of travel time distribution. In this paper, we develop a modified Gaussian mixture model in order to estimate link travel time distributions along arterial with signalized intersections. The proposed model is applicable to traffic data from either fixed-location sensors or mobile sensors. The model performance is validated using real-world traffic data (more than 1,400 vehicles) collected by the wireless magnetic sensors and digital image recognition in the field. The proposed model shows high potential (i.e., the correction rate are above 0.9) to satisfactorily estimate travel time statistics and classify vehicle stop versus non-stop movements. In addition, the resultant movement classification application can significantly improve the estimation of traffic-related energy and emissions along arterial. 相似文献