首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探明软土场地大直径变截面群桩基础动力响应特性,以翔安大桥实体工程为例,应用FLAC 3D软件,构建桩—土相互作用模型,研究在5010、1004以及典型的Kobe波和El-Centro波作用下软土场地群桩加速度、桩顶水平位移、桩身弯矩和剪力动力响应规律。研究发现,覆盖层对地震波具有较强的“滤波”作用;桩端加速度峰值出现的时刻有不同程度的滞后现象,在5010波、1004波、Kobe波、El-Centro波作用下桩端加速度峰值出现时刻分别滞后0.54 s、2.00 s、0.46 s、1.34 s;桩顶加速度、桩顶加速度放大系数和桩身位移峰值在1004波作用时较大,分别为5.30 m/s2、6.84、227.30 mm,桩顶永久位移、桩身弯矩峰值和剪力峰值在5010波作用时较大,分别为50.63 mm、2.38 MN·m、195.55 kN;桩身弯矩峰值和桩身剪力峰值都出现在软硬土层分界面。在桥梁桩基础抗震设计时,应着重关注软土层分界处的抗弯能力和抗剪能力设计,且考虑各种类型地震波作用对桩基的影响。  相似文献   

2.
针对国内西部岩质山区高陡边坡下桥梁群桩基础结构,在承台底部荷载已知的情况下,建立了基于ABAQUS软件基桩的计算模型,通过对高承台群桩基不同特征桩段受力分析,获得基桩桩基顶部内力和承台整体变形。研究结果表明:承台最大水平位移发生在左侧变形体坡脚处,最大综合位移出现在模型承台左侧;基桩最大位移出现在距桩底2/3处桩长处,由于基桩底部嵌固的影响,从桩底向下底延伸,负位移表现出先变大后减小的趋势,最后在桩底位置达到0位移。受桩顶弯矩和剪力的共同作用,基桩顶部产生最小应力。由荷载段到嵌固段,弯矩值由正向转化为负向,在桩底处逐渐变大,并在距桩底10 m处取得最大负弯矩,距桩顶1.5 m处取得最大正弯矩;基桩剪力由桩顶表现出先减小后增加的趋势,基桩整体剪力以桩底12 m呈对称分布,距基桩桩底8 m处取得最大正剪力,最大负剪力出现在基粧变形体下限边界距粧底12 m处。  相似文献   

3.
群桩基础单桩内力计算,最重要的一环是先求得各单桩刚度系数,在桥梁基础中,弹性桩较为普遍,其单桩刚度系数根据规范易得,而实际工程中,会遇到桥址处为岩石地质,而且基岩面起伏比较大的情况,这时就会出现刚性嵌岩桩,如何求解刚性嵌岩桩刚度系数十分关键。根据刚性嵌岩桩的特性,不计桩侧土压力对桩身产生的侧移,运用结构力学及材料力学相关知识推导刚性嵌岩桩的单桩刚度系数,并与规范提供的刚度计算方法进行对比,以此说明公式适用范围。解决了包含刚性嵌岩桩的群桩基础的单桩内力计算问题。  相似文献   

4.
基于陡坡双桩柱基础探讨了陡坡群桩基础承载机理,提出了陡坡与群桩相互作用简化分析模型,得到了陡坡群桩基础的等效分析模型,即侧向受荷高承台嵌岩群桩基础分析模型;综合考虑滑坡推力与简化分析模型建立了基于结构位移法的陡坡群桩基础计算分析方法,并提出了同时考虑稳定安全与经济最优的陡坡群桩基础优化设计方法。研究结果表明:陡坡群桩基础应尽量减小承台底部至最危险滑动面的距离,嵌岩深度为4倍桩径时能满足工程要求,群桩基础至坡面的距离不小于4倍桩径要求时符合工程实际。  相似文献   

5.
墙式嵌岩桩基础指的是横桥向很宽的扁矩形桩,依据其承载机理,可简化为平面应变问题。通过大量数值计算,得到此类桩基础在承受水平推力和纯弯矩时的桩内应力和变形分布规律,通过数据拟合,总结出适用于不同岩石特性、不同尺寸的桩基础各截面上的等效内力及岩面处特效变形的通用无量纲简化公式。  相似文献   

6.
《公路》2017,(8)
基于天津地铁7号线盾构近距离穿越立交桥群桩基础工程,建立三维有限元模型对盾构施工穿越群桩基础过程进行动态模拟,对群桩基础的轴力、剪力、弯矩和桩侧摩阻力随盾构开挖的变化规律进行了分析。结果表明,盾构穿越桩基础过程会导致邻近桩基础在盾构深度区域产生较大的轴力、剪力与弯矩。其中,轴力的增大集中在盾构到达前、穿越时与注浆3个阶段,产生的轴力比值为1∶4∶1;剪力与弯矩的变化发生1 D(盾构直径)深度范围内,且在垂直于盾构方向造成的影响远大于盾构掘进方向;盾构开挖后,盾构中心线深度以上的桩基础承受随桩深度减小的桩侧负摩阻力,导致群桩基础的承载力减小,桩基础处于较不利的受力状态。  相似文献   

7.
通过自制的水平加载装置对饱和软黏土和砂黏土地基中嵌固式单桩基础开展水平静载模型试验研究,主要研究了单桩基础的水平承载力和变形特性。试验发现:①桩身最大弯矩出现在土表下5倍桩径附近,当水平荷载较小时(小于45 N),桩周土处于弹性变形阶段,当水平荷载较大时,桩周上部土体开始进入塑性阶段,并出现明显的裂纹;②桩周土最大抗力发生在泥面下3倍桩径位置处,并随着外荷载增大土抗力也增大,但当外荷载增大到一定程度时,土抗力不再继续增大;③API规范推荐的p-y曲线与试验值相比偏于保守,表现为极限土抗力偏小。  相似文献   

8.
随着刚性桩复合地基在土木工程中的广泛应用,其抗震性能越来越受到人们的关注,而复合地基中桩身动力响应是确定其抗震能力的关键。为此依据相似理论,设计制作出一套主要由钢制砂箱、砂土以及比例为1∶10的3×3群桩模型组成的试验装置。将装置置于伺服加载系统下进行拟动力试验,按照相关规范输入地震波加速度时程并施加上部荷载,获得不同工况下刚性桩复合地基桩身应力应变响应结果。试验结果表明:①各桩最大剪力均发生在桩顶处,对比不同位置桩的剪力,角桩剪力响应值最大;②各桩最大弯矩值均发生在Z/L=0.3~0.43的区间内,对比不同位置桩的弯矩,角桩的桩身弯矩响应值大于边中桩,而边中桩又大于中心桩;③保持地震波的加速度峰值不变,增大施加的上部荷载,剪力和弯矩响应值会有比增大加速度峰值更大的增加幅度。  相似文献   

9.
以某新建铁路工程为例,基于有限元软件,以钻孔灌注桩桩基嵌入基岩深度(5种嵌岩深度)和桩前旋喷桩加固区范围大小(6种不同排数旋喷桩加固范围)作为控制变量,研究桩基的力学特性和路基面沉降。结果表明:灌注桩桩基的最大水平应力出现在土石界面附近,增加桩基的嵌岩深度和增加桩前旋喷桩排数都可有效降低桩基的水平变形和路基面沉降,桩基嵌岩深度为1D(D为灌注桩直径)或桩前旋喷桩为3排时,变化速率出现由快到慢的拐点。选择桩基长度为16 m、桩前旋喷桩为3排的加固方式,具有较好的经济性。  相似文献   

10.
桥梁桩基础沉降简化计算   总被引:1,自引:0,他引:1  
本文利用剪切位移法分析计算软质基岩上的嵌岩桩沉降变形。对嵌岩桩的沉降计算模型进行简化,并利用该简化模型进行实际工程的计算,结果表明,当桩顶荷载较小时,计算值往往偏大;当荷载在设计值附近时,剪切位移法计算结果和实测值基本一致,因此,在实际工程中可以采用本文的简化模型求解桥台桩基础的沉降。  相似文献   

11.
桥梁群桩基础承载性能数值计算结果与岩土参数的选取密切相关,为探讨更为符合实际工程地质情况的群桩基础受力计算模式,采用MATLAB编制的改进BP神经网络与遗传算法相结合的遗传神经网络计算程序,建立参数反演算法。该方法首先利用改进的BP神经网络对正交设计的样本数据进行训练,然后采用遗传算法进行最优求解。基于戛洒江特大桥深厚嵌岩超长桩试桩静载试验的数据,以嵌岩段中风化页岩和中风化砂岩的体积模量Gn和剪切模量Gs为反演参数,以数值计算为正分析,获得合理的参数值并应用于深厚嵌岩群桩基础受力分析。结果表明:本文提供的获取深厚嵌岩群桩基础受力分析参数的反演算法,可以获取合理的岩土参数,较好地用于该桥深厚嵌岩群桩基础受力分析,对群桩基础分析具有参考意义。  相似文献   

12.
《公路》2017,(12)
以门式双排桩为例,运用有限元数值软件,研究了水平向和竖直向地震共同作用下双排桩边坡的破坏形态和受力性状。三维模型中,土体采用弹塑性本构模型,桩假定为线弹性,桩土之间设置接触单元。通过研究,得出如下结论:(1)双向地震荷载作用下,桩身受力最大值出现时刻为4.66s处;桩身弯矩沿桩身向下呈S型布,桩身剪力沿桩身向下呈抛物线型分布。(2)随着地震荷载的逐渐增大,桩身最大弯矩剪力值亦逐渐增大;当地震荷载从0.4g增大至破坏前工况时,动力作用下附加弯矩剪力增幅急剧增大。在整个过程中,后排桩弯矩剪力最大值始终大于前排桩受力最大值。(3)双向地震荷载作用下,随着地震荷载的逐渐增大,边坡最大土体位移从静力作用时的46.3mm增大到0.4g时的51.6mm;同一排桩桩顶与桩顶之间土体位移也逐渐增大,从抗滑桩之间滑移的趋势越明显,边坡越不安全;等效塑性应变分布带从坡顶附近滑带处扩展到边坡滑带中下部,坡顶附近的最大塑性应变值逐渐增大,从静力作用时的0.04增大到0.10,趋近临界状态。  相似文献   

13.
当桥梁建于岩面起伏很大的岩石地区时,甚至同一个桥墩承台下,不同的钻孔,岩面起伏很大,岩面上的覆盖土层承载力也很差,这时扩大基础不合适,只能采用桩基础。这样同一个承台下,有些桩桩头到岩面距离较小,有些则较大,也即在同一个承台下,同时出现了刚性嵌岩桩和弹性嵌岩桩,如何计算这类群桩基础的单桩内力?运用结构力学位移法相关知识,计算得到每根桩分配到的内力,再根据分配到的内力值,总结桩基内力值与桩哪些参数有关,可为相关类似的群桩基础计算提供参考。  相似文献   

14.
以广东西部沿海高速公路磨刀门大桥为例,针对微风化花岗岩或角岩的地质情况,对钻孔桩基岩覆盖层增厚时嵌岩桩单桩轴向承载力、嵌岩深度进行了计算对比,说明了桩基础入岩深度、终孔的控制方法。  相似文献   

15.
运用开源有限元软件OpenSEES,依据离心机动力模型试验的原型尺寸建立数值模型,采用动力非线性Winkler地基梁模型模拟桩-土相互作用,分析地震波幅值对斜坡桩基变形、内力和桩-土相对位移的影响。结果表明,地震波幅值由0.149 7g增大到0.210 6g、0.305 5g、0.430 3g和0.480 9g时,桩顶最终残余水平位移分别增大0.35、1.27、3.05和4.34倍,呈非线性增加;斜坡桩的最大弯矩出现在砂土和基岩交界面处;不同地震波幅值下,群桩中的P3桩最大弯矩与P4桩最大弯矩的比值分别为1.26、1.45、1.52、1.26和1.42;在一定深度范围内,桩-土相对位移随地震波幅值的增大而增加。  相似文献   

16.
为研究一致激励条件下大跨度桥梁群桩基础的地震响应,以一座试设计斜拉桥(全长2 672m,主跨1 400m)为原型,设计了1/70的桩-土-桥梁结构全桥物理模型,基于该全桥模型开展群桩基础振动台试验研究。采用微粒混凝土和铁丝制作钢筋混凝土主塔和桥墩,C40混凝土和6mm螺纹钢制作桩基础和承台,质量比为3∶1的砂子和木屑模拟土体。模型包含8组群桩基础,分别支撑过渡墩、辅助墩和主塔。地震波采用人工波Acce100,自然地震波El Centro,Mexico City和Chi-Chi,以研究不同卓越频率地震波输入对大跨度桥梁群桩基础的影响。分析群桩基础的地震反应规律,包括不同桥墩处桩基础的桩身加速度、位移和弯矩。结果表明:因不同位置处群桩基础振动特性不同,相同地震动经各群桩基础传递至过渡墩、辅助墩和主塔底部,产生不同变化,导致不同桥墩或主塔处输入上部结构的激励不同;支撑辅助墩和主塔的群桩基础,桩顶加速度和相对位移随着输入地震波加速度峰值的增加而增加,但峰值加速度放大系数降低。4种地震波中Chi-Chi波引起的各群桩基础桩顶相对位移和桩顶弯矩响应最大;输入地震动为Mexico City波时,过渡墩处的群桩基础桩顶相对位移、加速度峰值放大系数大于辅助墩处群桩基础的相对位移和放大系数,输入地震动为其他3种地震波时,结果相反。  相似文献   

17.
采用ABAQUS软件,建立桩锚整体式支护结构和桩锚分离式支护结构有限元模型,分析二者受力性能差异,研究桩径、嵌固深度、冠梁尺寸、锚杆数量以及预应力等对其受力性能的影响。结果表明:两类支护结构位移由两端向中间减小,弯矩和剪力则由两端向中间增大,中间部分受力和变形保持一致;设计时应将端部两根抗滑桩的弯矩和剪力分别乘以1.35和1.2的承载力调整系数;桩锚整体式支护结构的最大位移比分离式结构小20%以上,最大弯矩小3%以上,最大剪力小6%以上;增大抗滑桩桩径,两类支护结构的位移和弯矩均减小;增大抗滑桩嵌固深度,两类支护结构的位移减小,但弯矩增大;冠梁尺寸增大可提高支护结构整体刚度和抗变形能力,但作用有限;增加锚杆数量、施加预应力均可显著减小抗滑桩的位移和弯矩,并改变位移和弯矩沿桩身的分布形态;以上参数变化对整体式支护结构的影响要远小于分离式支护结构。  相似文献   

18.
大直径嵌岩群桩基础具有承载力高、沉降小等优点,基于赤石特大桥自平衡试桩,采用ABAQUS有限元分析软件对不同持力层刚度、承台厚度及基础上部墩身形状进行数值模拟,分析和讨论超大直径嵌岩桩基础整体受力特性。  相似文献   

19.
侧向约束桩桩身弯矩问题比较复杂,该文采用室内模型试验研究含桩地基重复加卸载过程中侧向约束桩桩身弯矩特性,结果表明:1含桩地基重复加、卸载过程中,侧向约束桩桩身弯矩沿深度先增大、后减小,有1个峰值(首次加载有2个峰值),峰值出现在0.37倍埋置桩长附近;2桩身弯矩随含桩地基加、卸载而相应增、减。重复加、卸载到相同荷载时,桩身弯矩随加、卸载次数增加而减小;3首次加载达到P-s曲线拐点荷载时,弯矩增长缓慢,第2~4次加载到P-s曲线拐点荷载的前级荷载时,弯矩增长缓慢。说明加载到一定程度时,桩间土作用恒定,桩体作用逐渐发挥,桩体抑制了侧向约束桩弯矩的增长。侧向约束桩弯矩受含桩地基桩间土控制。试验结果为含桩地基侧向约束桩的设计提供了依据。  相似文献   

20.
为揭示黄土公路高陡边坡的稳定性状,选取黄土塬开挖平台非扰动黄土为试样,制作试样模型进行原位试样直接剪切试验,设计进行不同工况下埋入式与悬臂式抗滑桩模型试验,研究获取公路路堑边坡黄土土样应力-应变关系曲线、土样峰值强度及残余强度参数变化规律,并基于支挡抗滑桩和黄土边坡坡体内受力与变形状态,揭示桩-土相互作用过程与变形机理。试验结果表明:黄土试样在直接剪切时,随着法向应力增大,其应力-应变关系曲线逐渐由软化型向硬化型转变,且曲线逐步升高但未出现交叠;相同的剪切次数下,黄土试样峰值强度和残余强度均随法向应力增大而增大,残余强度较峰值强度有一定衰减,且垂直强度愈大,衰减愈明显;随着水平推力达到极限承载力,埋入式模型抗滑桩桩身土压力分布呈现上大下小的变化趋势,且在滑动面位置上部附近出现桩前最大土压力,桩体发生弹性变形,弯矩值沿桩身分布总体呈"S"形规律;悬臂式桩体不发生刚性转动,桩身土压力总体呈上下小、中间大的分布态势,桩后最大土压力出现在滑动面附近,而桩前最大土压力则随着现场试验中单排模型桩根数增多,自模拟滑动面逐渐过渡到新的剪出滑动面,桩身弯矩呈"D"形分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号