首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attached splitter plates is analyzed for a range of Reynolds number, based on the incident stream and height of the cylinder, in the laminar range. The Navier-Stokes equations governing the flow are solved by the control volume method over a staggered grid arrangement. We have used the semi-implicit method for pressure-linked equation(SIMPLE) algorithm for computation. Our results show that the presence of a splitter plate upstream of the cylinder reduces the drag, but it has a small impact on the vortex shedding frequency when the plate length is beyond 1.5 time the height of the cylinder. The presence of a downstream splitter plate dampens the vortex shedding frequency. The entrainment of fluid into the inner side of the separated shear layers is obstructed by the downstream splitter plate. Our results suggest that by attaching in-line splitter plates both upstream and downstream of the cylinder, the vortex shedding can be suppressed, as well as a reduction in drag be obtained. We made a parametric study to determine the optimal length of these splitter plates so as to achieve low drag and low vortex shedding frequency.  相似文献   

2.
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory(NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox Open FOAM coupled with arbitrary mesh interface(AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.  相似文献   

3.
Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.  相似文献   

4.
能量耗散效应的多域边界元法(英文)   总被引:1,自引:0,他引:1  
The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid.The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed,the body hull,and the part of the free surface excluding the body waterplane,and is subdivided into two subdomains according to the body geometry.The two subdomains are connected by a control surface in fluid.In each subdomain,the velocity potential is described by using the usual boundary integral representation involving Green functions.The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface.This multi-domain boundary element method(MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results.The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.  相似文献   

5.
Nonlinear interactions among incident wave, tank-sloshing and floating body coupling motion are investigated. The fully nonlinear sloshing and body-surface nonlinear free surface hydrodynamics is simulated using a Non-Uniform Rational B-Spline (NURBS) higher-order panel method in time domain based on the potential theory. A robust and stable improved iterative procedure (Yan and Ma, 2007) for floating bodies is used for calculating the time derivative of velocity potential and floating body motion. An energy dissipation condition based on linear theory adopted by Huang (2011) is developed to consider flow viscosity effects of sloshing flow in nonlinear model. A two-dimensional tank model test was performed to identify its validity. The present nonlinear coupling sway motion results are subsequently compared with the corresponding Rognebakke and Faltinsen (2003)’s experimental results, showing fair agreement. Thus, the numerical approach presented in this paper is expected to be very efficient and realistic in evaluating the coupling effects of nonlinear sloshing and body motion.  相似文献   

6.
Contrary to natural cavitation, ventilated cavitation is controllable and is not harmful. It is particularly used to reduce the drag of the hydraulic vehicles. The ventilated cavitation is characterized by various gas regimes. The mechanisms of ventilated cavitation are investigated in the present work with CFD based on a 2D solver. The attention is especially focused on the transition between the reentrant jet and twin vortex regimes. The results confirm that the product of ventilated cavitation number and Froude number is lower than 1(σcFr 1) in the twin vortex regime, while it is higher than 1(σ_cFr 1) in the reentrant jet regime, as reported in the literature. Further analysis shows that ventilated cavitation is significantly influenced by the natural cavitation number.  相似文献   

7.
Air separators provide safe, clean, and appropriate air flow to engines and are widely used in vehicles with large engines such as ships and submarines. In this operational study, the separation process in a Ranque–Hilsch vortex tube cleaning(cooling) system is investigated to analyze the impact of the operating gas type on the vortex tube performance; the operating gases used are air, nitrogen, oxygen, carbon dioxide and nitrogen dioxide. The computational fluid dynamic model used is equipped with a three-dimensional structure, and the steady-state condition is applied during computations. The standard k–ε turbulence model is employed to resolve nonlinear flow equations, and various key parameters, such as hot and cold exhaust thermal drops, and power separation rates, are described numerically. The results show that nitrogen dioxide creates the greatest separation power out of all gases tested, and the numerical results are validated by good agreement with available experimental data. In addition, a comparison is made between the use of two different boundary conditions, the pressure-far-field and the pressure-outlet, when analyzing complex turbulent flows in the air separators. Results present a comprehensive and practical solution for use in future numerical studies.  相似文献   

8.
The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×105 to 6.81×105, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation(LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction(FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.  相似文献   

9.
It is an important control process to operate motion of an submergence rescue vehicle(SRV). Seeing that the motion of the submergence rescue vehicle is special, it is necessary to employ non-linear predictive control system. For this reason, continuous dynamic performance of the system, the logical components and the operative restraints are expressed as the non-linear equations of state with the inequality restraints, and the model principle of hybrid system is introduced. The conclusion shows that it comes true to exactly control position and attitude of the SRV by means of non-linear model predictive control. The test in a model basin has also proved that the above methods are efficient.  相似文献   

10.
A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion. Firstly, a potential-based boundary-element method was used to calculate the hydrodynamic pressure, induced resistance and lift. Then the frictional resistance component was determined by the viscous boundary layer theory. Finally, a particular empirical technique was applied, to determine the region of upwash geometry and determine spray resistance. Case studies involving four models of Series 62 planing craft were run. These showed that the suggested method is efficient and capable, with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.  相似文献   

11.
This paper investigates the hydrodynamic characteristics of the rectilinear motion of a robotic fish underwater vehicle. This 2-joint, 3-link multibody vehicle model is biologically inspired by a body caudal fin carangiform fish propulsion mechanism. Navier–Stokes equations are used to compute the unsteady flow fields generated due to the interaction between the vehicle and the surrounding incompressible and Newtonian fluid (water) environment. The NACA 0014 airfoil aerodynamic profile has been designed to boost the swimming efficiency by reducing drag as the vehicle undergoes an undulatory/oscillatory motion. Using the Lighthill slender body model, a traveling wave mathematical function is defined to undulate the robotic fish posterior (caudal) region while the motion tracking is carried out by dynamic meshing technique. The results obtained show that though the net lift force approaches to zero, the net thrust or negative drag coefficient maintains a finite value dependent on kinematic parameters like tail beat frequency (TBF) and amplitude span (AS) at a given propulsive wavelength and the forward velocity of the vehicle. The results reveal the effects of TBF and AS on the coefficient of drag friction and the thrust force. Drag coefficients obtained from the simulations are compared and validated with the experimental results. The hydrodynamic results are found to be similar to the kinematic study results and suggest that TBF and AS play the most effective roles in the bioinspired propulsion technique. Relation of these parameters with propelling thrust force and forward velocity is also in conjunction over a given range of TBF and AS values.  相似文献   

12.
仿生机器鱼的快速起动性能研究   总被引:1,自引:0,他引:1  
基于鱼类快速起动的仿生学研究,建立了仿生机器鱼S形起动的运动方程,对S形起动的鱼体体干曲线波分别进行仿真计算和分析.通过解析鱼体受到的横向摆动流体举力、尾涡反作用力、边界层摩擦阻力和纵向附加质量力,建立快速起动的动力学模型.利用多步态的仿真实验,分析讨论了各起动性能指标的变化情况,并阐明了各运动控制参数对快速起动性能的影响.  相似文献   

13.
多关节仿鱼运动推进机构的设计与实现   总被引:2,自引:0,他引:2  
鱼类效率高、机动性强、持久力长的游动方式为人类水中运输设备提供了极佳的设计思路.通过模仿鱼类的运动方式,可设计出新颖的水下运输、作业装备.本文以仿鱼推进机构的设计和实现为目标,根据鱼类游动的特点,对其运动方式进行数字模拟,分析影响其游动性能的关键参数,并建立鱼类游动的数学模型.据此给出了一种多关节仿鱼推进机构的设计方案,完成了辅助这种仿生推进机构设计的仿真软件.借助可视化的鱼类游动及控制的仿真,给出仿鱼推进机构的关键参数,并研制了采用鱼类游动方式运动的仿生机器鱼.  相似文献   

14.
The objectives of this study were the development of a new device for maneuvering an underwater vehicle using the mechanism of a fish swimming, an experimental and theoretical analysis of the hydrodynamic characteristics of the device, and its application to maneuvering a fish robot. Observations and experimental analysis of the pectoral fins of a black bass (Micropterus salmoides) revealed that the locomotion of the fish, such as swimming forward at low speed, swimming backward, and turning in a horizontal plane is generated by using a combination of a feathering motion and a lead-lag motion of the pectoral fins. A mechanical pectoral fin making a feathering motion and a lead-lag motion generates a thrust force in a range of phase differences between both motions. The unsteady vortex lattice method, including the effect of viscosity, can express fairly well the unsteady forces acting on the mechanical pectoral fin in the range of phase differences where it exerts the thrust force. The fish robot, consisting of a model fish body and a pair of mechanical pectoral fins, can not only swim forward and turn in almost the same position, but can also swim in a lateral direction without changing the yaw angle. Translation of an article that appeared in the Journal of The Society of Naval Architects of Japan, vol. 182 (1997): The original article won the SNAJ prize, which is awarded annually to the best papers selected from the SNAJ Journal, JMST, or other quality journals in the field of naval architecture and ocean engineering.  相似文献   

15.
利用FLUENT软件数值计算了二维柔性鳍作升沉纵摇运动时的推力系数及推进效率,探讨了修正Bose变形方程、均匀载荷和非均匀载荷悬臂梁变形方程等三种柔性模式下纵摇轴位置对摆动鳍推进性能的影响,其中纵摇轴在尾缘处能够获得更大的推力,而最高的推进效率分别对应修正Bose模式下纵摇轴距首缘1/3弦长处和悬臂梁柔性变形模型下纵摇轴距首缘2/3弦长处.同时计算分析了斯特劳哈尔数、最大攻角等参数对柔性鳍水动力性能的影响,建立了最大推力系数和最高推进效率所对应的参数区间,其中低St数的最高推进效率发生在低αmax,高St数的最高推进效率发生在高αmax.  相似文献   

16.
应用计算流体力学方法对一典型内置推力轴承混流式喷水推进器的流场进行了数值模拟,计算和分析了叶轮、导叶体、进水流道等主要水力部件的推力分布.计算结果显示:(1)在推进特性线上的设计工况,内置推力轴承上的推力约为喷水推进器净推力(合力)的1.5倍,泵静止部件上的推力约为净推力的-0.5倍,进水流道上的推力很小,可忽略不计;(2)各部件上的推力占净推力的比例在推进特性线上的其它工况基本维持不变;(3)在非推进特性线上的工况,各部件上的推力分布不同于推进特性线上的工况,来流速度与泵转速的比值越高时泵静止部件上向后的推力越大,进水流道上的推力不再是可忽略的小量了.喷水推进器推力分布规律的研究结果可为喷水推进器和船尾结构的强度设计时加载水动力作用项提供参考.  相似文献   

17.
李永成  潘子英 《船舶力学》2021,25(10):1331-1340
本文采用重叠网格技术对考虑底壁面效应影响下的三维拍动翼的推进特性进行了数值模拟研究,计算时选取的特征雷诺数为1.0×104.数值模拟结果表明:底壁面的存在对拍动翼的水动力特性以及周围的流场结构都产生了很大影响;与无界流场相比,当拍动翼运动至底壁面附近时,将会产生明显的推力增大(高斯特哈尔数)现象,并且伴随着升力急剧增大;此外,由于拍动翼与壁面之间的相互作用,拍动翼周围的涡环变成了半月牙形.本文研究成果可为今后仿生扑翼的样机研制提供技术依据和参考.  相似文献   

18.
利用CFD技术对仿箱鲀科胸尾鳍协同推进机器鱼的水动力学特性进行分析,将整个机器鱼放入流场,对其胸鳍推进模式、尾鳍推进模式和胸尾鳍协同推进模式的水动力学特性进行对比,得出不同模式下机器鱼水动力学的变化规律。分析得出,在压力变化云图中,胸尾鳍协同推进产生的压力变化最为复杂;在速度涡量变化图中,胸尾鳍协同推进产生最为复杂的涡量变化,胸鳍运动产生的涡会逐渐脱落向后移动,与尾鳍产生的涡互相作用,增加尾鳍的推力,从而证明胸尾鳍协同推进模式是一种高效的推进机制。  相似文献   

19.
柔性操纵翼面是翼面形状可以改变的翼型,它可以通过翼面的柔性摆动拍水来产生推力,实现对潜器姿态的有效控制。论文建立了NACA0012翼型柔性摆动时的运动学模型,并对摆动时产生的推进力进行了公式推导,然后选用有限体积法和标准k-ε湍流模型,运用FLUENT动网格DEFINE_GRID_MOTION宏,编写UDF,在静水条件下对柔性操纵翼面摆动状态时进行了仿真。结果表明,操纵翼面在柔性摆动过程中产生了类似鱼类游动时的反卡门涡街,形成了向前的推力。柔性操纵翼面的这一特性,应用前景十分广阔。  相似文献   

20.
为探明串列全回转导管桨水动力干扰问题,基于粘流理论,采用滑移网格方法,开展了均匀来流下两个串列桨在不同偏转角度下水动力性能的数值预报研究,定量分析了不同偏转角度下,上游桨对下游桨水动力的影响,重点关注不同偏转角度时下游桨推力、功率损失及叶片负载的脉动无序性。研究结果表明,在上游桨尾流影响下,上游桨无偏转角度时,下游桨推力损失约70%,上游桨偏转10度时,下游桨推力损失约15%。本文研究结果对动力定位系统控制策略具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号