首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
根据对比,选用四点弯曲疲劳试验来评价木质纤维、聚丙烯腈及矿物纤维3种纤维对SMA疲劳性能的影响。四点弯曲疲劳试验结果表明,就初始劲度模量而言,在3种应变水平下掺加木质纤维SMA最大,而掺加矿物纤维SMA和掺加聚丙烯腈SMA则较小。就滞后角而言,3种掺加纤维SMA的粘弹性性能差别不大。疲劳寿命与应变水平表现出了较好的相关性,疲劳寿命曲线的走向大致相同。相同应力水平下,掺加聚丙烯腈SMA的疲劳寿命最长,掺加矿物纤维SMA次之,掺加木质纤维SMA较差。  相似文献   

2.
掺加不同纤维对SMA疲劳性能的影响   总被引:2,自引:1,他引:1  
谢晶  李娉婷 《公路工程》2008,33(5):150-153
根据对比,选用四点弯曲疲劳试验来评价木质纤维、聚丙烯腈及矿物纤维3种纤维对SMA疲劳性能的影响。四点弯曲疲劳试验结果表明,就初始劲度模量而言,在3种应变水平下掺加木质纤维SMA最大,而掺加矿物纤维SMA和掺加聚丙烯腈SMA则较小。就滞后角而言,3种掺加纤维SMA的粘弹性性能差别不大。疲劳寿命与应变水平表现出了较好的相关性,疲劳寿命曲线的走向大致相同。相同应力水平下,掺加聚丙烯腈SMA的疲劳寿命最长,掺加矿物纤维SMA次之,掺加木质纤维SMA较差。  相似文献   

3.
4.
木质纤维在SMA中的性能评价   总被引:5,自引:1,他引:4  
刘晓芬  黄卫东 《公路》2004,(8):239-241
针对一种新型木质纤维,提出了纤维评价方案,确定了新型木质纤维最佳掺量,并与常用纤维对比评价了高温抗车辙性能,此外还将SMA车辙试件与AC级配及改性沥青进行了性能对比。  相似文献   

5.
生产SMA一般都采用纤维作为稳定荆.目前多数使用的纤维主要有木质素纤维、矿物纤维及聚合物化学纤维三大类.一般认为纤维具有加筋、分散、吸附沥青、稳定、增黏等作用.从不同纤维相同SMA级配的室内试验结果进行对比,得到不同纤维之间的差别.  相似文献   

6.
为研究不同纤维对SMA(Stone Matrix Asphalt)的适用性,选取木质素纤维和玄武岩纤维,通过马歇尔方法得出不同纤维SMA的最佳油石比,并分析不同纤维SMA的性能。结果表明:在相同空隙率下,玄武岩纤维SMA的最佳油石比较小,谢伦堡析漏损失量较大,肯塔堡飞散损失量较小,其低温抗裂性和抗疲劳性能均大幅优于木质素纤维SMA,其水稳定性略优于木质素纤维SMA,60℃和70℃下的车辙试验结果表明:玄武岩纤维SMA的高温稳定性更好,并且温度越高,其高温性能越显著。  相似文献   

7.
姚立阳 《路基工程》2009,(4):163-164
通过分析聚丙烯腈纤维对沥青胶浆和SMA混合料性能的影响,表明纤维沥青胶浆同沥青一样具有显著的温度敏感性,但纤维用量过多会损伤胶浆的疲劳性能。纤维对SMA混合料性能的提高有利,聚丙烯腈纤维SMA混合料的各项性能比木质素纤维略胜一筹。  相似文献   

8.
文章通过疲劳试验,以疲劳方程的参数k值和n值为指标来评价混合料的抗疲劳性能。研究表明,纤维沥青混合料在最佳油石比下具有较好的耐疲劳性能,且存在一个最佳纤维剂量值,而素沥青混合料在最佳油石比下,纤维的介入反而会降低其耐疲劳性能。  相似文献   

9.
在沥青混合料中加入纤维加筋材料可以改善其整体的物理力学性能,这是近年来的一个重要研究方向。介绍了三种典型的路用软纤维,并详细阐述了纤维材料改善沥青混合料性能的作用机理。通过沥青混合料性能试验,研究了聚酯纤维、聚丙烯腈纤维和木质素纤维对SMA路用性能的影响。对试验结果进行分析后,表明三种SMA的试验指标均满足现行规范,且在部分指标上要远超出规范要求。经过对三种SMA的试验结果比较,可知掺0.25%聚酯纤维SMA的综合路用性能要优于掺0.25%聚丙烯腈纤维SMA与掺0.3%木质素纤维SMA。  相似文献   

10.
不同纤维对SMA疲劳性能的影响   总被引:3,自引:0,他引:3  
谢晶 《公路》2008,(10):214-217
根据对比,选用四点弯曲疲劳试验来评价木质纤维、聚丙烯腈及矿物纤维等3种纤维对SMA疲劳性能的影响.四点弯曲疲劳试验结果表明,就初始劲度模量而言,在3种应变水平下掺加木质纤维SMA最大,而掺加矿物纤维SMA和掺加聚丙烯腈SMA则较小.就滞后角而言,3种掺加纤维SMA的粘弹性性能差别不大.疲劳寿命与应变水平表现出了较好的相关性,疲劳寿命曲线的走向大致相同.相同应力水平下,掺加聚丙烯腈SMA的疲劳寿命最长,掺加矿物纤维SMA次之,掺加木质纤维SMA较差.  相似文献   

11.
温拌玄武岩纤维SMA性能试验研究   总被引:1,自引:0,他引:1  
研究了温拌玄武岩纤维SMA-13的使用性能,结果表明,玄武岩纤维SMA-13的油石比比木质素纤维SMA-13降低0.8%;温拌玄武岩木质素纤维SMA-13混合料成型温度可较热拌沥青混合料降低20℃左右。温拌玄武岩纤维SMA-13与热拌木质素纤维SMA-13相比,高温性能有所提高,水稳性能和低温性能相差不大。  相似文献   

12.
为提升SMA混合料的路用性能,通过室内试验研究不同纤维比例对SMA混合料路用性能的影响规律,并依托试验段对其路用性能进行验证。结果表明,随着玄武岩纤维与木质素纤维比例从3:0变化至0:3,SMA混合料动稳定度及抗疲劳性能下降、低温抗裂性能上升、水稳定性呈抛物线变化;与单掺纤维SMA混合料相比,复合纤维SMA沥青混合料性能更加均衡全面。基于综合性能与材料经济性最佳原则,推荐SMA混合料中的玄武岩纤维与木质素纤维复掺比例为1.5:1.5,经试验段证明其路用效果较正常路段良好。  相似文献   

13.
季度 《交通科技》2020,(1):102-105
改性SMA沥青铺装常用为钢桥面铺装层,为提高其高温稳定性,加入玻璃纤维与聚酯纤维混杂,通过马歇尔试验确定最佳纤维掺量,通过将车辙试验用最佳配合比混合料与常用的单掺聚酯纤维的沥青混合料相比较,研究其性能。结果表明,最佳纤维质量分数为0.3%聚酯纤维与0.2%玻璃纤维混合,该掺量最佳油石比为6.1%,其高温稳定性提升明显。  相似文献   

14.
李烨东 《上海公路》2022,(2):110-113
通过机理分析,优化合成级配,论证无纤维SMA的可行性。研究表明,相比传统SMA,无纤维SMA需要更细的合成级配。在降低20℃的拌合温度下,后者的高温性能降低了4%,低温性能提高了5%,水稳定性能提高了2%。同时,工后数据显示,无纤维SMA的压实效果更优,抗滑性能更好,密水性略有降低。成本上,无纤维SMA可节省约30元/t的生产成本,但过程控制要求更精细。  相似文献   

15.
玄武岩纤维近年来被作为SMA沥青混合料中的纤维稳定剂,具有突出优势。本文通过玄武岩纤维不同掺量对SMA沥青混合料的性能试验分析比对,确定玄武岩纤维在SMA沥青混合料中的最佳掺量,以及通过相同掺量的玄武岩纤维和木质素纤维对其在最佳油石比的SMA沥青混合料中的路用性能的试验对比分析,总结出各纤维在SMA沥青混合料各种性能的优势,为工程需要提供依据。  相似文献   

16.
对掺木质素纤维、聚酯纤维、矿物纤维的三种玛蹄脂和SMA混合料的高、低温性能进行对比研究,并结合经济性分析,对比不同纤维的技术经济性能。采用50℃锥入度试验和5℃弯曲蠕变试验评价纤维玛蹄脂的高温和低温性能,车辙试验和低温弯曲试验评价混合料的高温和低温性能。结果表明:木质素纤维玛蹄脂的高温性能最优、低温性能最差,矿物纤维玛蹄脂的低温性能最优、高温性能居中,聚酯纤维玛蹄脂的高温性能最差、低温性能居中;3种SMA混合料的动稳定度和低温性能的对比规律为矿物纤维﹥木质素纤维﹥聚酯纤维;矿物纤维和絮状木质素纤维成本低且接近,而聚酯纤维的价格最高。  相似文献   

17.
SMA纤维稳定剂的应用研究   总被引:2,自引:0,他引:2  
吴玉辉 《东北公路》2003,26(2):59-60,39
主要从纤维的种类、室内性能和路用性能等几方面对各种纤维进行比较,为更好地应用SMA提供一些技术参考。  相似文献   

18.
浅谈SMA施工中木质纤维的使用   总被引:1,自引:0,他引:1  
结合宁合公路高速化改造工程SMA面层的施工,介绍并探讨了木质纤维在SMA结构中的作用、用料的选择以及在实际施工中的使用方式。  相似文献   

19.
采用通常用于测定非泡沫塑料密度的气体比重瓶法测定了不同种类纤维的相对密度。通过试验研究了掺纤维的SMA沥青混合料的理论最大相对密度和体积指标计算问题。结果表明,纤维参与计算后,沥青混合料的理论最大相对密度和空隙率计算结果减小,有效沥青饱和度计算结果增大。且纤维相对密度越小,对体积指标计算结果的影响差别越大。对掺纤维的沥青混合料,在配合比设计体积指标计算时,应测定纤维相对密度,且纤维这一组分应参与计算,不应忽略不计。  相似文献   

20.
SMA沥青混合料中木质素纤维用量的试验研究   总被引:3,自引:0,他引:3  
目前SMA沥青混合料的木质纤维素掺量(0.3%)均以经验确定,缺乏相关的试验依据,文章提出通过SMA沥青混合料路用性能试验以选择确定混合料的最佳纤维掺量。通过评价和分析不同纤维掺量SMA沥青混合料的各项路用性能,包括析漏、肯特堡飞散、抗水损害、高温稳定性能、低温稳定性能等试验,以确定推荐SMA沥青混合料的最佳纤维掺量。研究结果表明,SMA沥青混合料木质素纤维的最佳掺量为0.33%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号