首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
聚丙烯腈纤维增强水泥混凝土的抗弯性能   总被引:3,自引:0,他引:3  
邓宗才  何唯平  孙成栋 《公路》2004,(2):129-134
为了研究将体积掺率0.085%~0.17%的聚丙烯腈纤维(PAN)掺入水泥混凝土后,对硬化混凝土力学性能的效用,试验研究了新拌纤维混凝土的坍落度和容重,测定了纤维混凝土的抗压强度、弹性模量、抗劈裂强度;基于美国ASTM及日本JCI方法,用四点弯曲梁测得了抗弯初裂强度、抗弯拉强度和抗弯韧性等。试验证明:聚丙烯腈纤维能够均匀地分散在混凝土中,纤维混凝土无离析现象;该纤维对混凝土具有良好的增韧效应和一定的增强效应。腈纶纤维使混凝土由脆性破坏变为有较好的延展性,可用于修建高等级水泥混凝土路面、桥梁面板、机场道面、堆石坝面板和抗震防爆结构等。  相似文献   

2.
为研究钢纤维对体外配置碳纤维(Carbon Fiber Reinforced Polymer,CFRP)预应力筋活性粉末混凝土(Reactive Powder Concrete,RPC)梁受弯性能的影响大小,探讨能否凭借RPC中钢纤维的掺入代替普通钢筋的作用,以预应力度为试验参数,进行两根体外配置CFRP预应力筋RPC梁受弯加载试验,明确梁的受力破坏过程特征。试验结果表明:梁内未配置任何普通钢筋、预应力度为1.0的全预应力梁发生少筋特征的脆性断裂破坏;梁内配置普通钢筋、预应力度为0.71的部分预应力梁,其承载能力及极限变形较全预应力梁分别提高88.7%和18.1%,破坏模式为梁内非预应力钢筋屈服、受压区混凝土压碎的延性破坏。钢纤维的掺入对全预应力梁抗弯性能的提升作用有限,普通钢筋的配置对体外CFRP预应力RPC梁受弯性能的改善作用显著,因此实际工程中不宜过高估计钢纤维的作用而取消体内非预应力钢筋的配置。基于试验结果编制非线性分析程序,并据此对部分预应力梁进行了数值参数分析,结果表明:相比体外CFRP预应力普通混凝土梁,采用RPC更能发挥CFRP筋的高强特性;有效预应力及预应力度的改变对体外CFRP预应力RPC梁极限变形的影响显著高于对其承载能力的影响。  相似文献   

3.
王晓杰 《中外公路》2024,(1):141-146
目前的高强与高性能混凝土存在抗折强度不高、脆性大、体积稳定性不良等缺点,活性粉末混凝土(RPC)是一种新型材料,具有良好的力学性能和高抗渗性,能够更大程度地降低混凝土用量和结构自重,从而达到安全可靠、节约成本的目的。该文将活性粉末混凝土应用于公路预应力箱梁中,通过创新优化配合比、改变传统运输工艺、蒸气养生棚养生技术研究,有效缩短活性粉末混凝土的浇筑时间,保证浇筑质量和强度。  相似文献   

4.
为研究预应力活性粉末混凝土(RPC)-普通混凝土(NC)结合梁的开裂性能,以铁路32m的T形梁为原型,制作10根RPC-NC结合梁和1根纯NC梁进行抗弯试验。对比分析试验梁的裂缝分布形态、裂缝间距及短期裂缝最大宽度,并在铁路规范的基础上推求适合于预应力RPC-NC结合梁裂缝宽度的计算公式。结果表明:预应力度增大,RPC-NC结合梁裂缝分布的范围减小;RPC-NC结合梁的裂缝间距明显小于NC梁,RPC加入后裂缝更加密集,并伴随产生大量细小裂缝;RPC高度对于RPC-NC结合梁裂缝出现及稳定发展阶段影响很小,进入失稳扩展阶段后随着RPC高度的增加,RPC-NC结合梁裂缝宽度增长速率降低;纯NC梁裂缝进入稳定扩展阶段后的扩展速率和裂缝最大宽度都明显高于RPC-NC结合梁;在铁路规范中引入结合梁裂缝修正系数后,能合理计算RPC-NC结合梁短期裂缝宽度。  相似文献   

5.
为研究预应力混凝土桥梁的梁体开裂后抗弯刚度变化规律,通过6片1∶5模型试验梁的开裂试验,系统分析了有粘结和无粘结预应力混凝土试验梁在单调加载和重复加载方式下的跨中挠度及抗弯刚度变化规律.试验结果表明,梁体抗弯刚度变化与加载方式有关,重复加载条件下梁体极限承载力明显小于一次单调加载情况.在将试验数据与现行规范对比研究的基础上,指出现行规范规定对预应力混凝土梁开裂后的抗弯刚度下降规律考虑不足,无法满足在役桥梁的技术状态评估需求,并通过引入跨中弯矩修正系数的方法提出了具体的抗弯刚度修正公式.  相似文献   

6.
活性粉末混凝土(Reactive Powder Concrete,简称RPC)是一种具有高强度、高韧性和高耐久性等优良性能的水泥基复合材料,具有广阔的应用前景。本文通过对20块RPC加筋板试件的抗弯试验,研究了钢筋保护层厚度和配筋率对RPC加筋板裂缝宽度的影响,结果表明随着保护层厚度的增加,加筋板的缝宽有明显增加,提高钢筋配筋率能有效约束裂缝的发展。依据普通钢筋混凝土裂缝宽度的算法,通过拟合得到了钢筋应变不均匀系数和钢筋应力的公式,同时考虑了裂缝宽度修正系数,结合试验数据建立了活性粉末混凝土板裂缝宽度计算公式,可为RPC受弯构件的设计提供参考。  相似文献   

7.
活性粉末混凝土(RPC)是一种新型高性能水泥浆复合材料,具有优异的力学性能和耐久性.本文对RPC在国内外桥梁工程中的应用发展进行综述,讨论RPC的配制机理和性能,展望应用前景.  相似文献   

8.
为研究高强钢筋活性粉末混凝土(RPC)梁在弯矩作用下的受力特性和其抗弯性能的影响因素,设计制作20根高强钢筋RPC矩形梁进行抗弯承载力试验,分析梁的破坏形态、荷载~挠度曲线、裂缝的发展和分布,研究配筋率和钢筋强度对抗弯性能的影响规律。结果表明:RPC适筋梁的正截面破坏过程与普通混凝土梁相似,表现出良好的延性,少筋梁和无筋梁具有一定的延性;相同钢筋强度RPC梁的开裂弯矩和极限承载力随配筋率增加而增大;相同配筋率时,RPC梁的极限承载力随钢筋强度增加而增大,但钢筋强度对开裂弯矩影响不大;试验过程中,梁的截面应变符合平截面假定;根据简化理论计算的RPC梁极限弯矩值和试验值吻合良好。  相似文献   

9.
体外CFRP预应力筋混凝土梁的受力性能   总被引:6,自引:0,他引:6  
对体外碳纤维增强复合材料(CFRP)预应力筋混凝土梁的抗弯性能进行了试验研究,根据试验结果对其受力过程、承载力、延性性能和破坏模式等进行了描述,同时编制了体外预应力混凝土梁的非线性全过程分析程序,对体外CFRP预应力筋混凝土梁进行了参数分析,进而推导了体外预应力混凝土梁的简化计算公式.结果表明:理论计算值与试验值吻合较好;张拉预应力筋时是否持荷以及持荷大小对梁的抗弯性能影响可以忽略;体外CFRP预应力筋可以大幅度提高钢筋混凝土梁的承载力,减小梁体变形和开裂程度;梁体内非预应力钢筋可以明显改善体外CFRP预应力筋混凝土梁的裂缝分布和延性;体外CFRP预应力筋混凝土梁的延性指标可达到2.5左右.  相似文献   

10.
超高强混凝土RPC强度的尺寸效应   总被引:5,自引:0,他引:5  
刘数华  阎培渝  冯建文 《公路》2011,(3):123-127
活性粉末混凝土(RPC)是一种新型超高强水泥浆复合材料,具有优异的力学性能和耐久性.为了能够更好地应用于结构工程,对超高强混凝土RPC试件强度的尺寸效应进行试验研究和机理分析.研究结果表明:以4cm立方体试件抗压强度为基准.对于10cm立方体试件,150 MPa级和200 MPa级的尺寸换算系数分别为0.81和0.76...  相似文献   

11.
活性粉末混凝土(RPC)是一种具有高韧性的复合水泥基材料。采用弯曲韧性试验方法研究硅灰和钢纤维对RPC材料抗折强度和弯曲韧性的影响,分析它们的影响机理,为RPC材料的实际应用提供试验基础。  相似文献   

12.
为了掌握预应力CFRP板加固混凝土梁的抗弯性能,进行了6片普通钢筋混凝土(RC)梁及4片部分预应力混凝土(PPC)梁的预应力CFRP板抗弯加固静载试验和非线性有限元分析,探讨不同损伤程度、CFRP板初始预应力大小、梁有效预应力大小等对RC和PPC加固梁的抗弯性能影响。结果表明:采用预应力CFRP板加固后能有效抑制裂缝产生和开展,减小裂缝宽度和构件挠度,显著提高RC和PPC梁的抗弯承载力;加固前的损伤程度越大,CFRP板也越早发生剥离,抗弯极限承载力降低也越大,破坏时CFRP板总是先发生剥离而后断裂;非线性有限元模型能够预测预应力CFRP板剥离前加固梁的抗弯行为,计算结果与试验结果吻合较好;建议CFRP板的初始预应力度控制在0.5左右比较合适。  相似文献   

13.
罗俊  陈鸣  秦明强 《中外公路》2021,41(1):270-274
活性粉末混凝土(RPC)作为一种新型工程材料,其在工程中的应用前景越来越受到关注,但对其抗剪机理尚未完全认识。该文根据RPC的力学特性,基于Rankine破坏准则,推导了极限平衡法求解配筋RPC梁抗剪承载力的计算公式。该公式形式简洁,主要考虑了剪跨比、纵筋率和箍筋率等因素对抗剪承载力的影响。通过试验梁数据对比,验证了计算公式的有效性。该公式将加深人们对活性粉末混凝土梁抗剪机理的认识,进一步推动活性粉末混凝土在工程中的广泛应用。  相似文献   

14.
令狐垚  王学敏  刘建军 《公路》2022,(8):142-146
活性粉末混凝土(RPC)是一种高强度、高韧性、低孔隙率的超高性能混凝土,其应用于大跨径桥梁具有一定的优势。以贵州某在建三跨预应力混凝土空腹式连续刚构桥为工程实例,用RPC代替原设计中用于箱梁的普通混凝土,同时对结构进行优化设计,通过有限元计算对结构的应力、变形进行分析,研究RPC材料在大跨梁式桥中的应用效果。计算结果表明,RPC方案能满足规范在受力、变形方面的要求,其材料用量更少,活载效应比也比普通混凝土方案有明显提高。结果表明,RPC材料在梁桥的实际应用上具有良好的可行性。  相似文献   

15.
粗骨料活性粉末混凝土(CA-RPC)桥面板是一种新型高性能桥梁构件,文中对其结构行为开展试验研究和数值仿真分析。对带湿接缝CA-RPC桥面板试件和无接缝桥面板试件进行四点弯曲加载的对比试验,得到全过程荷载-位移曲线;在三维有限元模型中通过引入牵引-分离本构关系,进行加载全过程数值仿真分析。研究表明,相比于整块预制桥面板,带湿接缝的CA-RPC预制桥面板的抗裂性、极限承载能力,以及延性均有所降低;有限元模型中材料特性和接触关系的合理设置,可较好地模拟CA-RPC预制桥面板的力学性能。结合试验结果和相关规范,提出了CA-RPC预制桥面板及其湿接缝区域的抗弯承载力计算方法。  相似文献   

16.
活性粉末混凝土预应力叠合梁抗剪强度   总被引:1,自引:0,他引:1  
将活性粉末混凝土运用于无粘结预应力混凝土叠合梁,梁中未配任何形式的箍筋。通过分析影响活性粉末混凝土无粘结预应力叠合梁抗剪强度的诸多因素,结合试验结果,选取其中最为关键的几个因素,如活性粉末混凝土与后浇混凝土的抗拉强度、截面尺寸、纵向受拉钢筋的配筋率以及有效预应力等,建立了比较符合活性粉末混凝土无粘结预应力叠合梁抗剪强度试验结果的两个公式,并将之与其他现行公式的计算结果进行了对比。结果表明,我国现有公式在计算活性粉末混凝土无粘结预应力叠合梁的抗剪承载力时是偏于保守的。  相似文献   

17.
为解决预应力混凝土连续箱梁桥因施工缺陷造成的箱梁压应力超限问题,以某预应力混凝土连续箱梁桥为工程背景,提出了箱内采用活性粉末混凝土(RPC)薄层加固、主跨合龙前在主跨侧箱梁最大悬臂端施加临时压重及减小铺装层厚度的综合处治方法,并以有限元分析结果和现场测试结果验证其适用性。结果表明:处治后箱梁压应力超限处的压应力最大降幅为16.8%,并满足现行相关规范的应力限值要求;RPC加固层与原结构整体工作状态良好,局部区域6cm厚的RPC加固薄层可使箱梁整体刚度提高5.8%;对于压应力降幅最大的截面,RPC加固薄层对压应力降低的贡献达58.7%;RPC可实现加固层的轻薄化,所提出的综合处治措施对解决箱梁压应力超限问题有效、实用。  相似文献   

18.
哑铃型钢纤维粉煤灰混凝土基本力学性能及抗弯韧性   总被引:12,自引:0,他引:12  
邓宗才  彭书成 《公路》2003,(9):149-155
为了研究哑铃型钢纤维对混凝土力学性能的效用,试验研究了新拌纤维混凝土的坍落度和密度,测定了纤维混凝土的抗压强度、弹性模量、抗劈裂强度;基于美国ASTM及日本JCI方法,用四点弯曲梁测得了抗弯初裂强度、抗弯拉强度和抗弯韧性等。试验证明:哑铃型纤维能够均匀地分散在混凝土中,纤维无结团现象;该纤维对混凝土具有良好的增强和增韧双重效应,对抗弯初裂强度、抗弯拉强度和抗弯韧性等力学指标都有明显的提高。  相似文献   

19.
作为桥梁快速建造中一种高效的装配式新结构,预应力混凝土Ⅰ型梁采用双折线先张法施工的密束预应力体系,具有预应力损失小、预压应力分布均匀、施工安全性好等特点。为检验该新型结构的抗弯性能,建立其正常使用极限状态及承载能力极限状态的抗弯能力设计及评价方法,开展了结构足尺模型的抗弯承载性能全过程加载试验,观察了结构在全截面工作阶段、开裂阶段和破坏阶段的结构形态、变形与受力特征及破坏模式。试验结果表明:在正常使用阶段,梁体工作性能良好,结构达到开裂荷载前,内力增量与荷载呈线性关系,应变分布满足平截面假定,受压区混凝土压应变、主梁挠度、主筋应变及预应力钢绞线内力增量均呈线性变化;继续加载时,结构内力及变形呈现明显的非线性特征,裂缝逐渐增多,应变增长速率加大,模型梁上翼缘应变横向分布差异性增大,呈现一定的剪力滞效应;随着裂缝深度发展,混凝土逐渐退出工作,预应力束不再与混凝土共同受力,直至梁体发生断裂;试验梁的计算破坏荷载与测试值的比例系数为1.08,静力延性系数为2.27,表明双折线先张预应力高强混凝土Ⅰ型梁的抗裂、抗弯承载能力计算模式具有较好的适用性和优异的抗弯静力延性。  相似文献   

20.
为对预应力组合箱梁的设计提供参考,利用简化塑性理论对完全剪力连接的预应力组合梁的抗弯承载力影响参数(混凝土和钢梁强度、预应力筋初始张拉力、预应力筋布筋形式、转向块数量)进行分析。分析结果表明:在截面尺寸受限制时,提高钢梁强度能够有效提高预应力组合梁的抗弯承载力;增加预应力筋的数量可较明显地提高梁体的抗弯承载力;预应力筋采用折线布筋形式时,可提高预应力初始张拉值,以提高预应力组合梁的弹性承载力;转向块布置数量越多,预应力增量越大,二次效应影响越小,预应力组合梁抗弯承载力越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号