首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
张丽萍  梁丙臣  张黎邦  张嶔  杨博 《水道港口》2023,(5):747-753+810
群桩的局部冲刷研究对保障海洋结构基础稳定性至关重要,采用现行规范和经验公式所得到的群桩冲刷深度计算值偏于保守且过于离散。深度神经网络具有很强的非线性映射能力,利用神经网络和学者研究中的试验数据建立深度神经网络模型,进行冲刷深度的预测并对结果进行敏感性分析。分析表明,文章建立的模型冲刷深度预测值与实际试验值拟合效果良好,冲刷深度神经网络模型具有可行性和有效性,可为群桩支撑的海洋工程建筑的填埋深度及后期防护等提供理论依据,具有十分重要的工程意义和理论意义。  相似文献   

5.
对船舶图像进行快速准确识别在军民领域都有广泛应用,随着船舶种类的增多、图像质量的提高,传统的卷积神经网络进行船舶图像识别需耗费大量时间。本文对深度神经网络的原理进行分析,并在此基础上研究基于深度神经网络的船舶图像识别流程,对船舶图像预处理技术进行研究,建立船舶图像训练集和测试集,对YOLOV2、卷积神经网络和本文算法的平均识别时间和识别准确率进行分析,最后研究3种算法的训练次数对识别准确率的影响。本文研究的深度神经网络船舶图像识别算法,在平均识别时间以及识别准确率上具有一定优势。  相似文献   

6.
基于深度学习方法的海上舰船目标检测   总被引:1,自引:0,他引:1  
为了提高海上无人艇的舰船目标检测精度和速率,本文基于深度学习方法,利用卷积神经网络、区域建议网络及Fast R-CNN检测框架构建了舰船检测系统。该系统通过共享的卷积神经网络提取特征;通过区域建议网络生成候选区域;通过Fast R-CNN框架实现目标检测识别,从而实现端到端的舰船目标检测。实验结果表明,相比于传统机器学习目标检测算法,该舰船检测系统在检测精度及检测速率上均有大幅提高,达到83.79%的准确率及0.05 s/帧的检测速率。本文的舰船检测系统在检测精度及速率上均表现优异,满足了水面无人艇的工作要求。  相似文献   

7.
针对传统多层随机神经网络性能不稳定问题,提出了一类利用粒子群优化算法来优化各层权值的深度随机网络方法.该方法利用粒子群优化算法,结合网络的输入输出灵敏度信息,逐层对自动编码器的输入层权值进行优化,通过改善自动编码器的性能来改善多层随机神经网络的性能.最后利用粒子群优化方法,对整个网络的权值作适当优化,进一步提高深度随机神经网络的性能.相对于传统深度学习算法,该方法在保持收敛精度的基础上降低了时间开销;相对于传统深度随机神经网络,该方法在增加时间开销基础上提高了收敛精度,从而较好地平衡了时间复杂度和收敛精度.  相似文献   

8.
基于深度卷积神经网络的船舶识别方法研究   总被引:1,自引:0,他引:1  
为解决目前船舶识别率较低的问题,基于深度卷积神经网络算法,提出一种在深度卷积神经网络基础上的改进算法.利用卷积神经网络对船舶图片进行深度特征提取,结合HOG算法得到准确的边缘特征,结合HSV算法得到颜色特征,通过SVM分类器对船舶进行分类.算法主要包括2个阶段:训练阶段实现卷积神经网络的预训练,将得到特征归一化,PCA降维,通过HOG算法得到边缘特征,最后训练SVM分类器;测试阶段则对算法的准确性进行核实.实验结果表明,该方法平均识别正确率达到93.6%,可以很好地实现船舶识别.  相似文献   

9.
为了提高通信异常数据检测效果,设计基于并行深度卷积神经网络算法的大规模舰船通信异常数据检测方法。采集大规模舰船通信数据,采用小波变换对数据实施降噪处理,将降噪后数据输入并行深度卷积神经网络中,经过模型训练提取特征,利用Softmax分类函数得出舰船通信异常数据特征,输出舰船通信异常数据检测结果。实验结果表明:该方法可有效实现大规模舰船通信异常数据检测,其加速比最高,并行效果最优;具有较强的大规模舰船通信数据集检测能力,提高大规模舰船通信异常数据检测效果。  相似文献   

10.
为解决目前船舶识别率较低的问题,基于深度卷积神经网络算法,提出一种在深度卷积神经网络基础上的改进算法。利用卷积神经网络对船舶图片进行深度特征提取,结合HOG算法得到准确的边缘特征,结合HSV算法得到颜色特征,通过SVM分类器对船舶进行分类。算法主要包括2个阶段:训练阶段实现卷积神经网络的预训练,将得到特征归一化,PCA降维,通过HOG算法得到边缘特征,最后训练SVM分类器;测试阶段则对算法的准确性进行核实。实验结果表明,该方法平均识别正确率达到93.6%,可以很好地实现船舶识别。  相似文献   

11.
在学生课堂行为识别场景下,存在干扰因素较多且缺少公开的数据集,识别效果较差问题,提出一种融合行为姿态和注意力机制的高校学生课堂行为识别模型,利用注意力机制的残差卷积神经网络,提取教学视频中学生课堂行为的空间和通道特征,利用与视觉描述互补的行为姿态信息获取深度特征蕴含的高层行为信息.为验证模型的有效性,构建了学生课堂行为数据集进行实验,实验结果表明,所提模型在高校学生课堂行为识别中展现了较好的性能.  相似文献   

12.
13.
14.
15.
16.
传统舰船通信网络流量估计算法输出结果与实际流量数值之间的误差较大,导致后期数据流量分析结果可信度降低。为了提升通信网络流量估计准确度,提出基于深度学习算法的舰船通信网络流量估计研究。首先,对通信网络空间中的数据流进行数据流模型建立,获得通信流量基础特征数据;然后,对其流量波动值域范围进行特征计算,以此获得深度学习样本。最后,通过深度学习算法,对样本数据进行学习,通过学习完成对流量估计系数的更新,进而提升估计精准度。通过对仿真数据的对比测试,证明提出的估计算法能够有效减小估计值与实际值之间的误差,满足适应估计场景的应用要求。  相似文献   

17.
为减少因人为操作不当导致的船舶避碰事故,提高船舶航行的安全性,提出一种基于深度Q网络(Deep Q Network, DQN)强化学习方法的船舶智能避碰算法。依据船舶间实时获取的航行状态信息,从全局角度构建智能避碰算法深度强化学习状态集;在对《国际海上避碰规则》(International Regulations for Preventing Collisions at Sea,COLREGs)进行充分理解的基础上合理量化部分COLREGs,综合考虑航向跟随、船舶碰撞和规则符合等因素,设计船舶智能避碰DQN算法奖励函数,保证避碰决策安全有效且满足避碰规则的要求。分别针对两船和多船会遇场景进行仿真试验,结果表明:该方法可使船舶在COLREGs的要求下有效避让来船,为船舶智能避碰技术的研究提供参考。  相似文献   

18.
陈海  李志刚  冯加果 《船舶力学》2021,25(5):586-597
半潜式平台承受着风、浪、流等复杂环境荷载的耦合作用,在工作海况下平台的浮体运动多为波频小幅运动.在极端海况下平台产生大幅运动对结构的安全带来威胁.本文基于深度学习理论,开展了半潜式平台运动响应预测及分布规律的研究.首先,按照10 min为时间间隔对环境监测信息进行划分,对风速、波浪压力等环境监测信息的分布规律进行研究并选取合适的分布拟合参数,结合分形学理论及统计分析的方法,提出了实测风速、波浪压力等数据的特征参数,并结合浪高、周期、流速、流向等实测数据,建立了具有降维特征的环境信息输入参数;其次,基于实测响应数据,以横摇为例,以10 min为时间间隔对其监测信息进行划分并对其分布规律进行研究,并选取合适的响应分布拟合参数作为响应的特征参数;接着,利用北斗远程传输系统传输的监测数据,基于深度置信神经网络(Deep Belief Network,DBN)建立极端海况下实测环境荷载与实测响应的关系模型,并与基于BP、Elman神经网络的关系模型预测结果进行对比,可以看出,基于DBN神经网络的关系模型预测误差仅为5.07%,结果较为准确;最后,基于DBN神经网络建立了荷载特征参数与响应分布拟合特征参数的关系模型,并与基于DNN、BP神经网络的关系模型预测结果进行对比.研究发现,基于DBN神经网络的预测模型结果更为准确,更接近于真实响应的分布规律,可以对工作海况下平台安全作业提供一定的指导.  相似文献   

19.
随着数据挖掘技术的发展,深度置信网络(DBN)这类深度学习算法被越来越多运用到工程领域。在故障诊断领域,结合DBN强大的自适应特征提取和非线性映射能力,可以摆脱以往对专家经验的依赖。基于此,本文为有效地监测柴油机气缸运行状态,提出一种基于改进深度学习算法的船舶柴油机故障诊断技术。先将原始信号的频域形式输入DBN当中,采用蚱蜢优化算法(GOA)搜索DBN的最优参数组合,并建立起最佳的柴油机气缸故障诊断模型。经测试验证,本文提出的诊断模型能够准确识别柴油机气缸运行状态并进行故障诊断,诊断率可以达到99.5%以上,具有较好的工程实用价值。  相似文献   

20.
随着数据挖掘技术的发展,深度置信网络(DBN)这类深度学习算法被越来越多运用到工程领域。在故障诊断领域,结合DBN强大的自适应特征提取和非线性映射能力,可以摆脱以往对专家经验的依赖。基于此,本文为有效地监测柴油机气缸运行状态,提出一种基于改进深度学习算法的船舶柴油机故障诊断技术。先将原始信号的频域形式输入DBN当中,采用蚱蜢优化算法(GOA)搜索DBN的最优参数组合,并建立起最佳的柴油机气缸故障诊断模型。经测试验证,本文提出的诊断模型能够准确识别柴油机气缸运行状态并进行故障诊断,诊断率可以达到99.5%以上,具有较好的工程实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号