首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
针对互通立交路段广告牌易对驾驶员横向、纵向操控稳定性、视认特性造成影响,进而提高行车风险的问题,现研究了不同广告牌设置参数对互通立交路段车辆行驶特性和驾驶员视认特性的影响,并提出了互通立交路段的广告牌合理设置方案,降低广告牌对车辆行驶的不利影响.基于常用广告牌设置参数,通过SCANeR驾驶模拟试验,研究不同广告牌设置参...  相似文献   

2.
急弯处警告标志位置对驾驶行为的影响研究   总被引:1,自引:0,他引:1  
为探索急弯处不同警告标志位置对驾驶行为的影响机理,利用驾驶模拟试验,在急弯前设置5种不同位置的警告标志,观察车辆在弯前直线路段、弯道路段中的运行状态.结果表明,标志位置对直线路段的平均速度,直线、弯道路段的平均加速度、速度标准差均存在显著性影响;标志位置与急弯半径的交互效应对直线路段的平均速度、弯道路段的平均加速度有显著性影响.警告标志位置能够影响车辆在弯前直线路段的行驶速度、驾驶员在弯道路段对速度的纵向控制以及过弯前后速度的波动性;同时,对速度控制的影响还受到急弯半径的干扰.  相似文献   

3.
《公路》2020,(5)
选择重庆九龙坡至永川高速路段的来凤立交进行虚拟实验,目的是研究车速和匝道半径大小对行驶舒适性与安全性的影响,并依据实验结论对来凤立交提出合理限速与设置安全性设施。首先使用纬地三维道路设计软件对来凤立交进行立交复现,然后依据实车实验,利用Carsim车辆动力学软件对车辆进行建模指导。研究得出如下结论:(1)横向加速度在缓和曲线和圆曲线上的峰值随着车速的增加而变大,考虑行驶安全性与舒适性,给出了行车速度建议,匝道A、B建议车速为50km/h以内,匝道C建议车速45km/h,匝道D限速35km/h,并针对每一条匝道提出安全性建议;(2)增大匝道半径有利于提高行车安全性与舒适性,但是具体半径值还需要结合实际情况;(3)针对匝道C、D,研究车速与匝道半径耦合效应下对横向加速度的影响,车速与半径对匝道D上的横向加速度影响程度都很大,而匝道C上的横向加速度主要受车速影响。  相似文献   

4.
为了打破仅以设计速度作为互通匝道设计依据的传统设计理念,引入运行速度模型,利用汽车行驶中的横向力系数大小对汽车行驶状态进行科学评价,对大货车和小客车在出口匝道的行驶状态分别评价,从而为互通立交出口匝道设计提供参考依据.  相似文献   

5.
为加深对互通立交小半径匝道的行车安全性和匝道超高之间关系的认知,综合天气,道路线形等因素,利用行车动力学仿真软件建立小半径环形匝道仿真模型,选取车辆的临界附着系数和横向荷载转移率为侧滑和侧翻风险指标,通过改变超高e值,分别分析了不同天气条件下大货车在小半径匝道段行车的侧滑和侧翻风险。研究结果表明:《公路立体交叉设计细则》中规定的匝道圆曲线半径最大值为8%,当因工程特殊性采用最大值时,在晴天路面干燥或雨天路面湿滑等条件下,大货车侧滑,侧翻危险性均较低,但横向力系数较大,驾驶员及乘客有车辆行驶不稳定,有倾覆的危险感的心理活动;当在路面积雪的车辆行驶条件下,e=7%和e=8%对应的路段侧滑风险较大,但当超高值增大至9%时,小客车侧滑风险显著降低。  相似文献   

6.
尚婷  白婧荣 《中外公路》2021,41(2):338-343
为了能够使驾驶员识别到更多的信息获取充足的道路环境状态来保证安全行驶,驾驶员在行驶时需要关注道路上的各种目标,驾驶员视线点在其视野范围内呈一定分布规律,视错觉减速标线的应用对交通安全有着重要影响.该文通过实车试验的方法对设置纵向减速标线的鹅公岩匝道路段和未设置标线的匝道路段的交通流量、区间速度、驾驶员瞳孔指标和轨迹横向...  相似文献   

7.
为确定车辆在互通式立交出口匝道满足安全行驶需求的运行速度过渡段最小长度,分别建立了满足超高过渡、变速行驶、3 s行程时间及横向加速度变化率适中等要求的运行速度过渡段长度计算模型。采用UMRR链式开普勒雷达测速仪,实测不同主线设计速度下立交出口匝道分流鼻运行速度,结合SPSS软件分析,得到分流鼻运行速度。基于运行速度过渡段长度计算模型和典型参数的分析论证,得到了满足不同需求下的运行速度过渡段长度。结果表明:匝道设计速度为30~40 km/h时,车辆变速行驶需求为运行速度过渡段长度的主要控制因素;匝道设计速度为50~80 km/h时,超高过渡、3 s行程时间为运行速度过渡段长度的主要控制因素;基于安全行驶需求,提出了互通式立交出口匝道运行速度过渡段长度最小建议值及纵坡修正系数。  相似文献   

8.
山区地形地质条件复杂,各类复杂的组合线形设计更为常见,例如直线与平曲线间组合或不同平曲线间组合。驾驶人在相邻组合路段行驶时会感知到线形的变化,引起驾驶行为的改变,最终车辆的纵向加速度也会随之改变。频繁的加减速行为会引起驾驶人不适,甚至形成安全隐患。目前针对相邻组合路段驾驶行为的研究中,关于加速度的研究主要基于路段特殊点进行计算。随着驾驶模拟技术的发展,高仿真驾驶模拟器为高速公路的设计评估提供了更好的数据及试验条件支撑。在高仿真驾驶模拟器中,基于湖南省永吉高速公路道路设计参数及周边地形环境参数,构建山区高速公路的三维虚拟模型,以山区高速公路中的相邻组合路段为研究对象,获取山区高速公路组合线形路段的车辆纵向加速度数据,提取加减速事件后,基于驾驶人的加减速行为,采用混合Logit模型,分别判定道路线形层和驾驶人层的影响,研究组合线形对驾驶人纵向加减速选择的具体影响变量以及变量的影响范围。研究结果表明:下游路段最大曲率、上游路段圆曲线段比例、下游路段变坡点数量、下游路段曲线数量、上游路段平均曲率和当前位置曲率等对驾驶人加减速行为有显著影响;通过对比混合Logit模型和多元Logit模型,指出驾驶人层面对模型结果的影响显著。研究结果提供了一种山区高速公路连续纵向加减速行为的建模方案,并可为研究驾驶人在复杂线形条件下的纵向加速度选择行为提供基础。  相似文献   

9.
由于城市快速路转向交通流量大、线形设计标准低,快速路立交匝道成为交通事故的多发点。利用上海市快速路3年事故数据和交通流量检测数据,以上海市浦西地区快速路立交匝道为研究对象,根据车辆在匝道上的行驶特征以及车辆交互特性,将立交匝道划分成出口段、衔接段和入口段及左转匝道、右转匝道等5个研究单元,针对各单元分别建立负二项模型分析匝道几何设计及其组合参数、交通流特征对于安全的影响。结果表明,出口段及入口段的安全性与几何特征的联系较为紧密;迂回式左转匝道相较于右转匝道受几何线形影响大;流量越大、长度越长,事故风险越高,但出口段的长度与事故发生呈负相关关系;出口处为直线、入口处存在长直下坡路段、入口处线形与主线差异大的立交匝道安全性差;迂回式左转匝道上存在过小半径曲线,特别是将小半径曲线设置在出口处,会极大增加事故几率。  相似文献   

10.
为明确城市道路立交交织区的微观驾驶行为特征,在重庆市主城区南山立交开展小客车实车试验,通过车载高精度GPS和Mobileye采集了32名驾驶员在自然驾驶状态下的交织区实测数据,获得了交织区以及邻近路段范围内的行驶轨迹特征、速度特征、车辆汇入行为、换道时间等微观驾驶行为的变化规律和分布特性,并分析了驾驶人性别、气质类型对微观驾驶行为的影响.结果表明,驾驶人在交织区范围内会经历减速和加速2个阶段,内敛型驾驶人进入交织区时的减速长度显著大于外向型驾驶人,交织区内的加/减速度幅值在±0.5m/s2范围内,交织区进口速度高于出口速度.在交织区范围内,男性驾驶人比女性驾驶人更早执行换道操作;另一方面,男性驾驶人穿越三角区再汇入车流的危险行为占比较大,容易导致交通事故的发生.男性驾驶人和外向型驾驶人通常更偏向以较高的速度通过交织区,并且换道持续换道时间较短;女性和内敛型则相反,速度普遍偏低,且需要更长的换道时间.  相似文献   

11.
为明确螺旋匝道和螺旋桥处的驾驶行为模式和汽车运行特征,在涪陵长江一桥、乌江二桥、重庆融侨大道和涪陵金凯环形高架4处地点开展螺旋匝道实车试验,用车载仪器采集自然驾驶状态下的汽车连续行驶轨迹、速度以及周围行驶环境等信息。基于自然驾驶数据,研究螺旋匝道范围内的速度变化模式、幅值特性以及影响因素。研究结果表明:单车道螺旋匝道的速度变化模式多样化,双车道螺旋匝道的行驶速度在整体上维持稳定,匝道范围内的连续升坡和降坡并未导致速度出现趋势性衰减和趋势性升高;螺旋匝道并入主线时,驾驶人在合流鼻之前有明显的、共性的减速行为,这与现行设计标准中的设计假定相反;除涪陵长江一桥之外,其余3处都是下行速度低于上行速度;螺旋匝道设计速度越低,实测速度与设计速度之间的偏离越严重,并且速度幅值离散化,因此不建议使用20 km·h-1的匝道设计速度;螺旋匝道运行速度与匝道半径成正相关。  相似文献   

12.
驾驶绩效是衡量驾驶员维持正常驾驶能力的重要指标。为研究高速公路平、纵线形指标对驾驶员行车过程中纵向和横向驾驶绩效的影响,利用模拟驾驶实验平台开展了模拟驾驶实验。按照几何线形对实验场景进行路段划分,统计分析了不同线形指标路段单元上车辆速度、车道偏移量等驾驶绩效指标的变化规律。实验结果表明,车辆运行速度随着平曲线半径增大而上升;下坡路段车速随着纵坡坡度的增大出现先上升后下降的小幅度变化;车辆横向偏移量随道路线形指标无明显变化规律,其变化受驾驶经验、车速、线形指标等多因素影响。这一研究可为高速公路人性化道路线形设计提供参考。  相似文献   

13.
阐述互通匝道中超高取值的问题,根据匝道功能,确定汽车在匝道上实际运行车速。根据实际运行车速来确定匝道超高值,达到匝道安全、舒适行车的要求。  相似文献   

14.
为了给设置于左转圆曲线处的避险车道流出角与引道长度设置提供参考,针对山区高速公路广泛采用的9.0 m宽制动床避险车道,考虑左转圆曲线半径和驶入速度的影响,进行了不同流出角度与引道长度的驾驶仿真试验研究。采用UC-win Road 9.0驾驶仿真平台,获取了不同场景下16名男性B照驾驶人由主线驶入紧急避险车道过程中的车辆运行特征数据。采用拟合回归的方法,分析了圆曲线半径和驶入速度对方向调整时间、最小转向半径、方向盘转角幅值、方向盘转角频率的影响,建立了各指标与圆曲线半径的定量回归关系模型,并对比了主线为直线时的试验结果。采用二阶聚类的方法对不同圆曲线半径条件下的引道与流出角度的设置水平进行分类,获取了适宜设置避险车道的初步条件。根据车辆的行驶稳定性,确定了左转圆曲线处避险车道流出角与引道的设计标准。研究结果表明:左转圆曲线处避险车道的流出角受圆曲线半径的影响,引道长度受圆曲线半径与驶入速度的影响;主线半径1 000 m及以上,流出角0°~5°,引道为6 s设计行程,流出角5°~10°,引道为9 s设计行程;条件困难时,紧急避险车道可设置于半径600~1 000 m的曲线处,流出角0°~5°,引道为9 s设计行程,流出角5°~15°,引道为12 s设计行程。  相似文献   

15.
当受地理与投资因素限制,山区高速公路隧道与主线出口间距离低于规范值,则该区域称为小净距路段。为描述该区域车辆行驶特征,充实山区公路设计与交通管控的理论基础,在我国秦岭服务区等7处山区高速公路小净距路段,通过无人机定点俯拍采集高清行车视频,基于视频提取全域车辆高精度速度与轨迹数据,实现车辆行驶特征分析。本研究基于SIFT算法进行视频配准;基于YOLOv5与DeepSORT算法实现车辆检测与连续跟踪;采用Savitzky-Golay滤波器对数据进行光滑滤波。基于以上方法,可获得高精度车辆行驶数据。经验证,车速精度可达到95%以上,轨迹误差小于20 cm。而后,考虑了净距长度、车辆类型、车道分布等指标,从多角度多因素对行车特征进行了分析。结果显示:①小净距路段车辆行驶特征与普通路段有明显的差异,车速分布不满足正态分布规律;②整体上驶出车辆在渐变段起点前10~20 m左右会稳定车辆运行状态;③由于视角更高,货车相对小车能更快识别出口路况,所以车速相对平稳;④内侧驶出小车在渐变段起点20 m后以1.1~1.4 m/s的横向速度驶入减速车道,当主线为左偏曲线最有利于驶出;⑤净距长度对驾驶行为产生的影响最为明显,交通流方面交通量是最大的影响因素,道路线形因素中曲线偏转方向及偏转角是最大的影响因素。  相似文献   

16.
驾驶人在驾驶车辆的过程中总会面临由自身或外界条件所带来的或高或低的风险,即驾驶风险,通过对驾驶风险进行识别、分析及评估是对风险进行管理的有效对策,明确由人为因素(即驾驶人个体特征及驾驶行为)所带来的驾驶风险并对驾驶人进行安全管理尤为重要。为了全面了解各类危险驾驶行为和各种驾驶人群体的驾驶风险行为研究进展,对驾驶风险领域重点问题进行了总体概述。从驾驶人个体特征及驾驶行为的角度出发,探究了驾驶风险领域目前的研究现状,并利用科学知识图谱展示驾驶风险领域研究的发展进程与结构关系。通过Web of Science核心合集数据库获取了3 406篇在1986~2020年(截至2020年2月29日)间出版的驾驶风险研究相关英文文献,共涵盖8 684位作者及6 018个关键词,基于科学知识图谱对该领域文献进行梳理与分析。结果表明:驾驶风险领域的国外研究在驾驶人选择方面主要从年轻驾驶人、老年驾驶人、新手驾驶人及职业驾驶人的角度进行切入,重点围绕酒驾、药驾、分心驾驶及疲劳驾驶等主题开展研究。与国外研究相比,中国在分心驾驶、疲劳驾驶领域的研究相对丰富,而针对酒驾、药驾的研究试验手段较为单一,研究不够全面;在研...  相似文献   

17.
大型立交交通噪声污染特性分析   总被引:1,自引:0,他引:1  
针对交通建设项目环境影响评价中对大型立交的交通噪声污染特性分析不够系统和深入的问题,从占地面积、通行能力、行车速度、匝道转弯半径、车辆行驶状态等方面分析了大型立交的特性,从车流密度、速度、车型和行驶工况、路面材料、纵坡、距离、障碍物等方面分析了大型立交交通噪声的影响因素,提出了大型立交交通噪声具有立交位置和规模不同交通噪声影响不同、单车噪声相对较小、需要考虑加速和减速噪声、噪声声源复杂等特性。  相似文献   

18.

为明确山区道路中减速带布设对车辆运行的影响,选择在重庆市主城区江南立交开展减速带布设区域的实车试验,采集了车辆的速度和加速度等数据,以此分析试验路段的运行特征。结果表明:①速度分布带宽在减速带两侧各40 m左右达到极小值,在减速带位置速度带宽出现反弹,表明在减速带布设位置车辆运行速度差异较大,容易产生追尾风险;②减速带对驾驶员的速度选择行为有较强的约束力,且2个减速带相隔越近对速度选择行为的约束作用越强,减速效果更好;③通过减速带之前的初速度越大,所需的减速长度越长,应越早采取减速措施;85th百分位减速长度值和加速长度值分别为225,212 m;④车辆通过减速带时的加速度、减速度与制动初速度、加速前初速度的大小密切相关;道路环境越复杂,车辆通过减速带时减速度与加速度曲线的差异性越显著;⑤减速带对车辆的速度折减率上限可达0.9,下限随初始速度的增大而增加。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号