首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
甘肃庆阳新近纪上新统红层由于特殊的成因,其工程力学特性与南方红黏土有较大差别。为系统研究穿越该地层大断面隧道支护结构的受力特征,以银西高铁庆阳隧道为研究对象,通过现场实测和有限元模拟获得衬砌结构内力、围岩压力、5~10 m围岩深部位移、支护收敛变形的时空分布特性,对现场监测结果体现的衬砌-围岩复合结构受力状态产生的原因进行分析,并利用ABAQUS软件模拟隧道开挖过程以对比验证衬砌结构受力规律,得出该地层隧道地应力、围岩压力、衬砌结构内力特征。研究结果表明:1)围岩各项指标属于极硬土—极软岩临界范畴。2)该地层衬砌结构围岩质量较好,水平地应力为垂直地应力的2倍,可优化为Ⅲ—Ⅳ级围岩进行设计的同时增大侧压力系数。3)未闭合的初期支护不能有效限制围岩变形,可通过设置临时仰拱等措施改善受力状态;数值模拟结果与现场实测规律相符。4)该地层变形剧烈区为洞周开挖界限向围岩内1倍洞径范围,变形区域主要集中在拱顶;延迟开挖仰拱可有效减少仰拱内衬砌结构受力。  相似文献   

2.
针对高地应力软岩隧道开挖时围岩大变形问题,以某隧道圆形扩挖段为背景,采用三台阶法施工和3层初期支护+小导管注浆+二次衬砌的复合结构支护,并通过现场监测、数值模拟和理论计算研究开挖过程中的围岩变形及支护结构受力。结果表明:上、中台阶开挖时的隧道围岩变形速率较大,在仰拱封闭和第3层初期支护施作完成后,隧道变形趋于稳定;采用3层初期支护结构可有效改善隧道周边围岩应力,3层初期支护基本都是受压结构,拱腰和边墙处竖向应力最大,拱顶处水平应力最大;二次衬砌拱腰、拱顶、拱脚和边墙处安全系数均大于规范要求,保证隧道结构安全。  相似文献   

3.
甘肃庆阳新近纪上新统红层由于特殊的成因,其工程力学特性与南方红黏土有较大差别。为系统研究穿越该地层大断面隧道支护结构的受力特征,以银西高铁庆阳隧道为研究对象,通过现场实测和有限元模拟获得衬砌结构内力、围岩压力、5~10 m围岩深部位移、支护收敛变形的时空分布特性,对现场监测结果体现的衬砌-围岩复合结构受力状态产生的原因进行分析,并利用ABAQUS软件模拟隧道开挖过程以对比验证衬砌结构受力规律,得出该地层隧道地应力、围岩压力、衬砌结构内力特征。研究结果表明: 1)围岩各项指标属于极硬土-极软岩临界范畴。2)该地层衬砌结构围岩质量较好,水平地应力为垂直地应力的2倍,可优化为Ⅲ-Ⅳ级围岩进行设计的同时增大侧压力系数。3)未闭合的初期支护不能有效限制围岩变形,可通过设置临时仰拱等措施改善受力状态;数值模拟结果与现场实测规律相符。4)该地层变形剧烈区为洞周开挖界限向围岩内1倍洞径范围,变形区域主要集中在拱顶;延迟开挖仰拱可有效减少仰拱内衬砌结构受力。  相似文献   

4.
通过对实测数据分析可知,米拉山隧道凝灰岩遇水软化对围岩的变形影响很显著,为此,采用数值模拟方法对米拉山隧道凝灰岩开挖与支护力学特性进行了研究,获得了在不同时期围岩遇水软化和各分步开挖阶段围岩的位移、应力场变化规律,支护衬砌结构的变形、应力分布及内力分布情况。围岩遇水软化后,由于隧道的变形,锚杆与围岩发生相对滑动,锚杆嵌入隧道围岩,隧道变形大的部位也是锚杆受力大的部位,同时该部位锚杆与围岩的相对滑动也最大。隧道下台阶一次性开挖后施作的锚杆受力左右成对称分布,下台阶左右分步开挖施作的锚杆受力成不对称分布,后面施作的锚杆受力小于前面施作的锚杆受力。隧道围岩遇水软化后初期支护发生整体下沉,沉降量由拱脚向拱肩逐渐增大,拱顶沉降相对小于拱肩沉降;通过对不同阶段隧道围岩遇水软化下二次衬砌和仰拱的受力分析,发现在围岩软化的情况下进行隧道的开挖时,下台阶一次性开挖、仰拱一次性施作对隧道的安全性和稳定性方面都有提高,并得出不同阶段隧道围岩遇水软化隧道在后期运营阶段均处于安全状态。  相似文献   

5.
宜昌伍家岗长江大桥主桥为(290+1 160+402) m双塔简支钢箱梁悬索桥,北侧锚碇为隧道锚,隧道锚长90 m,埋深80 m,与水平线夹角40°。隧道锚设置于微风化砾岩层,岩体强度与胶结程度低,遇水极易软化。前锚室前12 m采用机械开挖,之后采用两台阶钻爆法施工;锚塞体段及后锚室段采用三台阶钻爆法施工。爆破后小循环进尺,初期支护及时跟进,二衬采用支架法施工,侧卸式矿车出渣。通过隧道锚拱圈爆破试验对被保护对象质点振动速度、围岩松动圈、隧道下沉与收敛的数据进行采集和分析论证,前锚室从12 m处开始用毫秒导爆管雷管微差爆破,锚塞体和后锚室上台阶超大变截面采用电子雷管微差爆破,取消隧道锚拱圈预留保护层,提高工效26%,并有效防控了软质岩隧道锚开挖过程中围岩失稳与坍塌的风险。  相似文献   

6.
由于软岩单轴抗压强度普遍小于15MPa,多以破碎、松散和强风化状态赋存且具有可塑性、遇水膨胀性、流变性等特点,隧道开挖穿越软岩地段时,常伴随围岩变形量过大、支护出现病害等问题,严重制约了隧道结构的安全与稳定。通过监控量测技术对隧道软岩大变形段施工过程中围岩和支护结构受力位移情况进行动态监测与回归分析研究,得出隧道拱顶最大沉降量为257mm,需要提前采取围岩加固措施,在开挖第19d时施作二衬能有效抑制围岩和初支继续变形,且应力应变监测表明二衬是安全稳定的。  相似文献   

7.
隧道斜井进入主洞三岔口段断面大、受力复杂、施工难度大,是长大隧道施工的关键。三岔口将隧道分为多个施工作业段同时施工,缩短了工程的工期,加快了隧道的整体施工进度。某山岭隧道斜井进入主洞处三岔口采用台阶扩挖法。斜井末端采用上下台阶,从上台阶向上挑挖4.2 m确定导洞高度,继续向前扩挖至对侧主洞边墙轮廓线完成导洞施工。主洞采用三台阶法,按照上台阶5.3 m、中台阶3.59 m、下台阶3.31 m依次向进口和出口方向开挖。三岔口段主洞断面面积92.1 m~2,为大断面隧道。大断面隧道的跨高比大,导致围岩和支护的稳定性变差,所以主洞在施工过程中应加强支护来保持隧道的稳定。利用ABAQUS有限元软件对隧道进行了数值分析,并直观地模拟了隧道开挖后围岩的应力分布,为隧道的施工提供合理依据。锚杆、钢筋网、衬砌、格栅和钢架根据不同的围岩等级按相应的要求进行了施工。通过对围岩及支护微小变形的监测,掌控了在开挖过程中围岩的稳定程度和支护结构的力学动态信息。对监控量测数据进行了回归分析,以较好地反映围岩变化规律,并分析各阶段的位移速率,预测最终位移值。监控量测数据表明:拱顶下沉和周边收敛的累计变形范围为8~14 mm。  相似文献   

8.
《公路》2017,(11)
针对隧道中先浇筑主洞衬砌结构后进行横洞开挖的施工工序中横洞施工对主洞衬砌结构形变破坏的影响,以某软岩隧道为工程依托,通过隧道衬砌应力监测、初支结构形变监测以及横洞施工时主洞衬砌结构形变破坏的监测,对深埋软岩隧道横洞施工对主洞衬砌结构形变破坏影响进行了研究与分析。研究表明,隧道交叉段围岩形变量较大,围岩形变速率较大,最大水平收敛位移达到537mm。最大拱顶下沉值达到346.1mm,围岩形变速率平均值达到9.93mm/d;依托工程隧道衬砌为主要受力结构,受力随着时间呈逐渐增大趋势。局部位置处形成应力集中区,应力值达到1.13 MPa和1.03 MPa。衬砌混凝土在左拱脚与右拱腰位置处呈现受压状态,最大压应力值为0.889 MPa。拱顶呈受拉状态,最大拉应力值为6.45 MPa。深埋软岩隧道中的横洞施工对主洞衬砌结构的形变破损有着较为严重的影响,影响范围达到140m。在此软岩隧道中不宜采用先浇筑主洞衬砌结构后对横洞进行爆破开挖的施工工法。  相似文献   

9.
为研究极软岩隧道车行横洞交叉段施工力学特性,以大梁山特长公路隧道V级极软围岩段为依托,采用现场试验结合数值模拟试验分析其空间效应。研究断面现场监测结果表明:6个断面在深度为1 m、2m和3 m处内部围岩位移受横洞开挖影响较小,可忽略不计。拱腰和拱脚处钢支撑内力在横洞开挖后小幅增大,影响区集中于拱腰及以下部位,对拱顶部位影响较小。远离横洞侧拱脚、拱腰及拱顶处围岩压力与层间压力所受开挖影响很小,而近横洞侧拱腰处影响相对较大,在施工中应值得注意。数值试验结果表明,混凝土应力受横洞开挖影响主要表现为压应力增大,产生压应力增大区;围岩塑性区在开挖前有一定程度增大和区域改变,锚杆轴应力施工前后变化不大。  相似文献   

10.
分岔隧道围岩支护设计研究   总被引:1,自引:0,他引:1  
张晓燕 《公路工程》2009,34(3):83-85,93
建立数值模型,模拟了一种新型分岔隧道的开挖过程,分析了其不同洞段的围岩变形与应力分布特点.基于数值模拟结果,提出了针对不同结构形式洞段的支护形式与支护参数.实例工程证明,这种支护形式和支护参数有效地控制了围岩的变形,对同类工程具有重要的借鉴作用.  相似文献   

11.
公路隧道穿越水平泥岩砂岩互层施工过程中支护体系力学特性较为复杂,通过开展大梁峁特长公路隧道水平泥岩砂岩互层段支护体系现场试验,研究水平泥砂岩互层段隧道初期支护中的锚杆轴力、围岩压力,钢架应力、混凝土应力及支护变形,二次衬砌中接触压力和混凝土受力特征。分析表明:拱部锚杆作用明显,边墙锚杆受力较小,建议锚杆由拱部160°减少至拱部120°,同时适当增加拱部锚杆;围岩压力在断面开挖后7d时间内已基本达到最大围岩压力的80%左右,说明在该种岩层中隧道开挖后围岩压力释放较快;水平泥岩砂岩互层关键控制点在拱部位置,边墙部位的支护结构无论从受力还是变形来说均较小;研究成果可为水平层状岩层隧道及类似工程的修建提供参考。  相似文献   

12.
《公路》2017,(9)
通过对老虎山隧道导洞转正洞施工进行现场监测,结合数学统计分析方法,研究了超大断面隧道导洞围岩-支护结构施工力学响应规律,分析了支护结构高风险部位及高风险时段,提出相应措施提高施工安全性。根据统计分析得出:(1)开挖第1~8d为高风险期,需加强监测频率,酌情采取加强支护措施;(2)导洞支护结构主要受力部位为拱顶和拱脚,需加强支护措施;(3)导洞转正洞开挖过程,正洞挑高开挖会导致导洞拱顶拱脚应力增大;(4)正洞向一侧开挖后,对导洞造成偏压影响,开挖侧拱脚应力急剧增长。  相似文献   

13.
根据兰渝铁路新城子隧道小间距段在开挖过程中出现严重大变形的工程实例,通过对小间距段左、右线在不同开挖方法下的现场监控量测数据及该段结构受力测试数据进行研究,并结合数值模拟计算结果分析,提出高地应力小间距隧道合理的施工方法。研究结果表明:针对高地应力区小间距隧道的开挖,采用应力释放洞法较台阶法能更有效地控制围岩变形,且支护结构所受到的围岩压力及内力均较后者小很多。  相似文献   

14.
闫鑫雨 《交通科技》2021,(2):126-129,154
新建隧道下穿既有隧道时,交替开挖工序可能会对既有隧道产生不利影响,文中以某公路隧道交叠段为对象,对新建隧道开挖进行全过程数值模拟,分析开挖过程对既有隧道底板变形的影响,同时考虑交叠段隧道结构之间相互作用关系,分析新建隧道支护应力及围岩变形.结果表明,新建隧道开挖后,竖向位移最大值出现两主洞隧道拱顶部位,水平位移最大值出...  相似文献   

15.
通过建立后掘隧道的三台阶开挖数值分析模型,模拟D/B分别为0.5,0.75,1,1.25,1.5,2情况下,后掘隧道开挖对中岩墙多次扰动所引起的围岩塑性区分布、主应力差、水平位移等力学特性,并分析其对先行隧道初支内力的影响。通过分析中岩墙应力、变形随净距的变化,表明当中岩墙厚度小于0.75B时,中岩墙上部区域塑性区已贯通,塑性区范围急剧扩大,说明后掘隧道对中岩墙的受力变形和先行隧道支护结构受力极为不利。在D/B=0.5的不利情况下,可对中岩墙进行注浆加固处理,模拟结果表明注浆可极大降低初支受力,最大轴力减小了49.1%,最大弯矩减小了29.1%,大大提高了围岩稳定性。  相似文献   

16.
为研究软岩隧道超前导洞的适用性,基于经典弹塑性理论,建立深埋软岩隧道超前导洞法开挖应力释放的力学模型,采用2阶段的方法推导考虑超前导洞应力释放的隧道开挖弹塑性解。定义围岩应力释放比来反映应力释放的效果,并研究不同地应力、围岩弹性模量、强度等条件下超前导洞开挖半径对应力释放效果的影响。结果表明: 通过施作超前导洞可以降低作用在支护结构上的围岩压力,尤其是在高地应力环境或围岩较软弱的条件下,采用超前导洞法进行应力释放效果更加明显。但导洞半径并非越大越好,现场试验表明: 对于3车道大断面软岩隧道,导洞断面太大对隧道围岩的稳定不利。隧道施工中,应在保障围岩稳定的前提下进行应力释放,做到初期支护尽早封闭成环,实现隧道安全快速施工。  相似文献   

17.
由于隧道洞口多岩性接触带、构造带,存在软硬岩交叉接触,致使开挖后围岩受到扰动出现应力释放及二次重分布,坡面岩土体会沿着坡面发生滑动及沉降,甚至局部失稳。本文提出采用MATLAB软件对某公路多岩性构造带隧道洞口段仰坡及两个典型断面其位移变形进行回归分析,验证隧道开挖过程的三维模拟技术,分析开挖过程中隧道仰坡加固前后的变形及受力情况。通过数值模拟与监测数据的对比分析,确定了采用设计变更后的喷锚支护加固方式能够有效的控制仰坡的变形及受力。  相似文献   

18.
牛头山隧道为双向6车道大跨度隧道,当开挖至绿泥石云母片岩段时发生了严重的大变形,拱顶最大下沉达1.6 m。为解决极软岩隧道大变形问题,通过对大变形围岩和初支变形特征、发生原因的分析,确定了"分台阶大预留、快开挖、双层强支护、早封闭"的大变形处理原则和方案。施工期间通过对双侧壁、单侧壁法和三台阶法施工的现场实践,证明依托工程采用短台阶开挖工法控制围岩大变形具有十分显著的效果。在确定采用三台阶开挖方法后,对拟定的应力释放层扩挖+双层H型钢初期支护和双层H型钢初期支护+108锁脚钢管两种支护方案,在左右洞进行了平行试验,结果发现采用双层H型钢支护+108锁脚钢管对于控制大变形效果良好,最终采用该方案顺利完成了绿泥石片岩段施工。  相似文献   

19.
为优化高地应力软岩隧道支护结构受力以及控制围岩变形,开展隧道洞型与双层初期支护支护时机研究。首先,通过现场监测数据分析高地应力软岩隧道单、双层初期支护的支护效果及围岩变形规律;然后,采用FLAC3D软件对比分析马蹄形(高跨比0.80)、类圆形(高跨比0.90)、圆形(高跨比1.00)3种洞型下以及第1层初期支护变形达300、350、400 mm时施作第2层初期支护时隧道的受力与变形情况。研究结果表明: 1)对于高地应力Ⅲ级大变形围岩2车道隧道,采用双层初期支护较单层初期支护虽有效控制了围岩变形,但在施工过程中仍出现了拱肩破坏、仰拱开裂等现象; 2)适当增大隧道高跨比可有效降低围岩变形与支护结构受力,高跨比为1.00时效果最好; 3)适当增大第1层初期支护的预留变形量,推迟第2层初期支护的支护时间,支护应力大幅降低,因此,建议第1层初期支护变形达400 mm时施作第2层初期支护。  相似文献   

20.
为了保证位于我国西北的某高地应力软岩隧道的安全施工,基于有限元软件Midas/GTS对隧道的变形控制措施和开挖方法进行了研究。通过分析掌子面挤出位移、围岩塑性区、支护结构受力以及围岩变形等指标对比了环形开挖预留核心土法和三台阶七步预留核心土法的两种隧道开挖工法。通过围岩塑性区分布、支护结构受力和围岩变形等指标对比分析了不同的喷射混凝土厚度(21、28、35 cm)和掌子面加固范围(90°、127°、180°)。根据研究结果提出最适合本隧道的施工方法:采用三台阶七步预留核心土法进行隧道开挖,喷射混凝土厚度为28 cm,预加固范围为180°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号