首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐进才  崔幼龙  唐俊林  王皋 《隧道建设》2022,42(Z1):238-248
为解决小相岭隧道平导和正洞的围岩大变形问题,采用现场试验的方法对围岩力学状态进行测试,基于实测数据对隧道大变形成因进行分析并提出针对性控制治理对策。结果表明: 1)隧道围岩强度偏低且存在明显的各向异性,初始地应力以水平应力为主,属极高地应力;现场实测结果显示底板处围岩损伤范围明显大于边墙处,推断隧道大变形为底隆变形,这与现场结构变形特征相符。2)隧道大变形的主要原因是下伏缓倾层状软弱岩层、高水平地应力、支护结构不对称等因素,尤其是平导底板的不对称结构对抵抗底隆变形能力较弱。3)在采取平导设置仰拱、正洞打设长锚杆、增大预留变形量、提升结构的刚度及强度等措施后,隧道变形得到了有效控制。  相似文献   

2.
为了研究高地应力软岩隧道施工变形控制方法,以兰渝铁路木寨岭隧道为例,通过对超前导洞法与三台阶法进行现场试验,分析了2种施工方法在高地应力软岩地层的变形控制效果,总结了三台阶法施工各阶段的围岩变形规律,主要结论为: 1)超前导洞法与三台阶法施工,隧道中台阶是变形控制的重点; 2)2种方法对高地应力软岩大变形总体控制效果相近,应结合其施工效率进行比选; 3)隧道开挖后应及早施作仰拱,这对控制隧道变形极为有利。  相似文献   

3.
基于麻拉寨隧道水害段轨道最大隆起值为28 mm,最大水平变形值为9 mm,运用FLAC3D软件模拟反算等效水头高度;数值模拟进一步验证了强降雨导致地下水壅高,高水压导致隧底中心水沟及边墙脚等薄弱部位产生劈裂破坏突水。通过降压泄水孔、封闭地表落水洞延缓地表水下渗、列车碾压等应急措施及隧底注浆加固、锚杆锚固、降压泄水洞等永久措施进行综合整治,并进行整治效果数值模拟。通过分级提速,2017年12月16日限速段恢复常速,恢复后轨道几何尺寸稳定。  相似文献   

4.
深圳地铁6号线民乐停车场工程上跨3条高速铁路隧道,具有结构复杂、环境敏感、地质复杂、施工难度大、工期紧张及施工风险高的特点。为了准确分析和合理评估复杂地质环境条件下大直径桩基开挖对运营高铁隧道安全运营的影响,运用三维数值模拟软件分析了该地铁停车场桥基施工对下部侧穿高铁填土隧道的扰动效应。数值计算结果表明,在多种开挖方案和技术条件下,大直径桩基的开挖成孔不会造成紧邻地铁停车场下方各运营高铁隧道的变形和受力状态的明显改变,整体处于施工安全范围内,表明桩基施工不会危及高铁隧道的结构安全和列车的行车安全。结论对该工程建设及高铁隧道安全运营具有一定的指导意义,可供类似地质条件下相互毗邻、复杂交接工程的设计与施工参考。  相似文献   

5.
即将开工建设的川藏铁路雅安至昌都段,隧道穿越地层多以陡倾(立)变质层状板岩为主,埋深大都在千米左右,地应力高或极高,其建设面临着很严重的大变形问题,给设计阶段初期带来极大挑战。针对以上工程背景,基于层状围岩的变形特征,对高地应力陡倾板岩隧道的合理洞型选择展开研究。首先通过解析计算分析圆形洞室层状围岩的变形特征,并进一步采用离散元数值模拟计算分析马蹄形洞室的变形特征,经相互对比验证数值计算的可行性和合理性,在此基础上,对比研究高地应力陡倾板岩地层单洞双线隧道、双洞单线隧道选择对控制变形的优越性,最后在选定的双洞单线隧道洞型基础上进行优化选择。研究结果表明:与岩层倾角垂直处围岩以结构变形为主,结构面张开变形与薄层结构的弯曲变形为变形的主要来源,且垂直结构面方向围岩变形程度与影响范围均大于其他方向;从控制隧道变形及开挖影响范围考虑,在高地应力陡倾(立)板岩地层采用双洞单线隧道更为合理;在高地应力陡倾(立)板岩地层中,单线隧道高跨比为1.02~1.06时,变形控制最好,而圆形隧道由于开挖面积的增大并非为最优断面。  相似文献   

6.
运营中的地铁隧道由于周边建设项目的开展,经常受到扰动,引起位移和变形,对隧道结构产生影响。为确保地铁线路的安全运营,对出现较大变形的隧道必须及时进行整治纠偏回调。文中以深圳地铁1号线受前海建设项目影响区段整治工程为依托,阐述了运营盾构隧道注浆纠偏方案及其实施过程;介绍了隧道纠偏阶段自动化实时监测系统及其实施方法、监测控制指标,分析了隧道注浆纠偏实施效果。  相似文献   

7.
兰渝铁路两水隧道高地应力软岩大变形控制技术   总被引:5,自引:0,他引:5  
赵福善 《隧道建设》2014,34(6):546-553
兰渝铁路两水隧道地质条件极为复杂,洞身围岩为千枚岩及炭质千枚岩,属极软岩,受高地应力影响,施工时发生了挤压性大变形,变形和破坏极为严重。以现场测试和理论分析为手段,结合隧道变形特征,探索和研究了适合两水隧道的软岩变形控制技术,并得出以下结论:1)软岩隧道的变形特性及稳定性(塑性区)取决于地应力、围岩的力学特性、开挖断面等,且与围岩的支护条件密切相关;2)通过采用加大预留变形量、加大支护刚度、多重支护,优化施工方法、适时施作二次衬砌等手段有效地控制了大变形,较好地解决了两水隧道高地应力软岩施工问题。在此基础上,提出了软岩隧道大变形分级标准及其对应的支护参数。  相似文献   

8.
软岩铁路隧道在运营阶段易发生持续的变形及底臌等其他影响工程安全的现象,而高地应力加剧了变形。为探究在不同高地应力作用下软岩隧道的变形和受力的规律,运用FLAC3D对软岩隧道的位移和安全系数进行分析。结果表明:竖向地应力不变,水平地应力越大隧道的水平位移越大,竖向位移越小,水平地应力的改变对双线隧道影响显著;水平地应力的改变对隧道安全系数的改变影响不明显。  相似文献   

9.
李忠 《公路交通科技》2015,(4):120-121,136
随着我国交通建设的快速发展,山岭隧道建设中高地应力软岩不良地质情况屡屡发生。高地应力软岩隧道变形大、处理风险高、工期时间长,有效预防和控制隧道大变形成为目前隧道建设中亟需解决的问题。对高地应力软岩隧道特点进行总结,揭示高地应力条件下隧道大变形产生机理及影响因素,研究高地应力软岩地质条件下变形控制技术,并在实际工程中得到成功应用。研究结果对高应力软岩条件下隧道施工具有重要指导和借鉴意义。  相似文献   

10.
赵晋友  周鲁  周书明 《隧道建设》2012,32(3):336-340
为解决重载运输条件下铁路隧道设计难题,通过大秦线铁路隧道病害的调查资料,对重载运输诱发的隧道病害及其原因进行总结分析。依托山西中南部铁路通道隧道设计经验,提出重载铁路:〖JP〗 1)软弱破碎围岩大于1000m或软岩高地应力段长大于500m的隧道、4km以上突水突泥风险等级较高的岩溶隧道优选采用2个单线隧道方案; 2)单线隧道仰拱矢跨比取1/6.5、双线取1/10.5,可以满足30t列车轴质量要求; 3)隧道内坡度不应小于3‰、富水地层不小于5‰,提出防排水措施实现运营可维护; 4)计算确定了轨下结构设计参数; 5)对隧道内轨道结构过渡、轨下及隧底结构过渡段采取了设计措施; 6)提出了隧道基底普查及承载要求。  相似文献   

11.
唐绍武  王庆林 《隧道建设》2010,30(2):199-201,211
高地应力软弱围岩段施工不可避免地产生大变形,为合理选择支护措施,有效控制软岩隧道变形,进行专门的研究试验是非常必要的,为解决大变形问题,结合专家意见并根据现场实际采用9个试验段来探索变形施工技术,由试验段可知高地应力软岩大变形施工应放抗结合。随着斜井埋深的增加、地应力的增加,初期支护强度、刚度应相应增加,否则容易出现坍塌;二层支护(套拱)的方法能有效控制变形;超前小导洞,超长水平大钻孔高地应力释放技术的应用,有一定效果。  相似文献   

12.
盾构隧道下穿既有铁路施工不可避免地会对周边岩层产生扰动,导致铁路线路的不平顺而危及行车安全。该文以厦门地铁2号线盾构下穿厦深线高速铁路路基工程为依托,通过Peck沉降公式和PLAXIS-2D、MIDAS-GTS有限元软件进行数值模拟,分析盾构施工对高速铁路路基与轨道变形影响的时空分布规律;同时在盾构下穿前设立100 m试验段,通过对深层位移孔、地表沉降点监测得到岩层变形规律和盾构合理推进参数,为盾构下穿高速铁路路基提供理论支持。下穿过程中,通过对高速铁路路基和轨面变形的自动化监测,实时调整盾构推进参数以减小引起的沉降,盾构穿越后实测路基最大沉降0.97 mm,确保了高铁运营安全。  相似文献   

13.
兰渝铁路位于青藏高原隆升区边缘地带,地质环境极为复杂特殊,存在第三系富水粉细砂岩、高地应力软岩、大直径TBM长距离快速掘进等施工难题,采用室内外试验、理论计算和现场实践相结合的方法,对特殊复杂地质隧道修建技术进行多方面的创新和探索,得到以下成果:1)通过数值分析和现场试验,对第三系砂岩物理力学性质、微观结构和复杂的水稳特性等进行研究,采用地表深井和洞内真空轻型井点相结合的综合降水体系,首创富水粉细砂隧道全断面水平旋喷超前预加固施工工法,攻克第三系流砂难题; 2)提出高地应力软岩设计阶段变形潜势和施工阶段动态调整的分级方法,针对变形机制提出主动应力解除与被动控制相结合的变形控制技术,首创运营期间自动化实时监测系统,构建软岩隧道设计、施工、运营管理的成套技术体系; 3)提出TBM设备参数设计原则,研发同步衬砌、多级级联皮带机出碴系统,首创分阶段通风技术,解决大直径TBM安全快速长距离施工的难题。兰渝铁路特殊复杂地质隧道修建过程中取得的技术成果,填补了多项空白,推动了隧道修建技术进步。  相似文献   

14.
尤显明  李沿宗 《隧道建设》2017,37(7):832-837
为了解决极高地应力软岩隧道大变形控制难题,以兰渝铁路木寨岭隧道岭脊核心段施工为例,通过现场试验和数据分析,得到如下主要结论:1)提出了"先放后抗,抗放结合,锚固加强"的变形控制理念;2)得出了该隧道岭脊核心段"超前导洞应力释放+圆形4层支护结构+径向注浆+长锚杆+长锚索"综合变形控制方案;3)超前导洞应力释放效果明显,正洞累计变形减小幅度约为34%;4)得到了圆形多层支护结构变形规律;5)累计变形均控制在设计预留变形量内,保证了该隧道岭脊核心段大变形控制效果。  相似文献   

15.
刘浩  祝志恒  李林毅 《隧道建设》2020,40(5):747-754
针对降雨引发的岩溶地区隧道水害影响隧道运营安全问题,以京珠高速公路洋碰隧道为例,通过地质勘探与水连通试验,探明隧址区不良地质情况与水连通特性,采用数值仿真方法探究雨后高水压下隧道结构应力场、渗流场的特征规律,并结合病害情况提出整治措施。研究结果表明: 1)地表强降雨、地层岩溶发育、灌入式雨水下渗通道是此次水害的主要原因,而这些原因综合导致的隧道外水压力过高是病害发生的直接原因; 2)由于排水能力相对不足,地层高水头下隧道结构(尤其是隧底和拱顶)仍承受较高水压力,大幅削弱了衬砌结构安全性,易引发边墙、隧底的裂损问题; 3)采取“增设泄水廊道+地表封堵及引流+增设边墙泄水孔”的整治措施后,整治效果良好。  相似文献   

16.
姜跃东  王玉来 《公路》2013,(1):278-283
高地应力下的岩爆和大变形是山区高等级公路长大隧道勘察设计过程中常遇到的工程地质问题,对隧道选址、轴线布设、衬砌支护设计以及施工方案选取等均有重要影响。文中以长安高速公路长治至平顺段主线控制性工程虹梯关特长隧道为例,对勘察设计过程中高地应力下的岩爆和大变形的评价标准、分析方法、防治措施等方面进行分析评价,以供今后在类似工程勘察设计过程中参考。  相似文献   

17.
针对川藏铁路雅安至林芝段特殊地质背景下的高地应力软岩大变形、高地应力硬岩岩爆、高地温、活动断裂、富水构造带等不良地质问题,系统阐述了5种重大不良地质的工程特征和主要危害,在调研和分析国内外类似工程建设经验基础上,提出了相应的处置原则和工程对策:1)软岩变形隧道遵循优化洞形、主动加固、分级控制、强化支护的处置原则;2)岩爆隧道遵循预警先行、主动控制、多机少人、保证安全的处置原则;3)高地温隧道遵循加强地质预报、热害分级防控、综合降温配套、合理适配材料、强化劳动保障的处置原则;4)活动断裂段按照小震不坏、中震可修、大震不垮的总体设防目标,遵循预留空间、优化断面、节段设计、运营监测的处置原则;5)高压富水构造带遵循超前长距离预报、超前泄水降压、超前堵水限排、超前围岩加固、加强支护结构、加强监测的处置原则。  相似文献   

18.
结合兰州周边典型大断面湿陷性黄土隧道的建设,通过室内物理力学试验、微观结构测试和数值模拟等方法,系统研究了兰州地区黄土隧道的病害机理、基底加固措施及长期蠕变规律。结果表明,黄土湿陷变形的力学特性是导致隧道结构典型病害的主因,在黄土增湿及结构劣化作用下,不均匀沉降导致大断面黄土隧道墙脚下沉、仰拱及填充层中部隆起变形并断裂。据此,提出采用旋喷桩基底加固工程措施,以控制地基土变形,确保结构安全,通过室内蠕变试验和数值分析,发现二衬施作后230 d左右,蠕变变形趋于稳定,蠕变5年后,应力场分布基本稳定,在30年蠕变期内,衬砌各项应力指标满足隧道长期运营安全要求。  相似文献   

19.
运用MIDASGTS有限元软件,分析了TBM导洞扩挖法在高地应力软岩环境中隧道开挖的应用价值。通过对某公路隧道分别采用TBM导洞扩挖法、预留核心土环形开挖法和两台阶法三种施工方法进行数值模拟,主要以拱顶沉降、拱腰水平收敛和拱底隆起等围岩变形指标进行对比分析,得出TBM导洞扩挖法高地应力软岩隧道施工时的围岩变形控制效果最好的结论。同时分析了在富水等复杂地质情况下,TBM导洞扩挖法在排水、探明前方地质情况等方面更具有优势。  相似文献   

20.
陈明福 《公路》2021,66(11):369-374
高地应力软岩条件下隧道开挖极易引发大变形问题,尤其单线铁路隧道由于其不利的断面形式,使变形控制更加困难.以在建的丽江—香格里拉铁路长坪隧道为工程依托,总结高地应力软岩单线铁路隧道大变形诱发因素及大变形特征,提出针对性控制措施,并开展现场试验,分析隧道变形及结构受力发展规律,验证变形控制技术的合理性.结果 表明:高地应力、软弱破坏围岩、不利断面形式及不合理开挖方法等因素是造成单线铁路隧道产生大变形的主要原因;隧道变形持续时间长,变形量大,尤其边墙位置变形收敛明显,拱架及喷射混凝土破坏严重;采用优化断面形式、加长锚杆、提高支护刚度、减少开挖分部等措施,可以改善结构受力,充分发挥主动控制作用,有效控制围岩变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号