首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《中外公路》2021,41(3):230-236
隧道洞口浅埋段施工易受地表水及不良地质条件影响,隧道大变形或掌子面溜塌事故频发,施工安全风险极高。为解决洞口浅埋段软岩隧道变形控制难题,建立三维数值模型,对不同施工工法的围岩变形及其优缺点进行对比分析,确定采用三台阶临时仰拱法,并通过现场应用验证了优化工法的可行性。结果表明:该工法可在中、下台阶增设临时仰拱,隧道初期支护及时封闭成环,支护结构受力得到改善,对变形控制效果较好。虽相比CRD法在控制隧道变形方面略有不足,但综合各方面因素,优先考虑选择该工法,并采取了分阶段支护参数加强措施。经现场施工实践验证,采用该工法配合分阶段补强支护措施,初期支护变形增长速率很快减小并趋于稳定,可有效控制隧道初支大变形,保证施工安全和进度。  相似文献   

2.
李贵民 《隧道建设》2019,39(9):1494-1499
以下穿岩堆段的丽香铁路黄山哨隧道为工程依托,对岩堆段地表开裂及洞内初期支护边墙严重变形的问题进行研究。地表埋设6根测斜管监测地表位移情况,洞内布置3个断面进行围岩压力、钢架内力、二次衬砌内力、初期支护与二次衬砌间的接触压力、锚杆轴力量测。在分析现场岩堆段洞内外受力机制及原因的基础上,根据数值计算结果优化二次衬砌断面型式及进一步加大二次衬砌厚度及配筋。采取以下措施控制隧道岩堆段变形: 1)地表岩堆土石接触面开裂处增设截排水措施; 2)加大隧道初期支护钢架型号及加长岩堆侧边墙径向系统锚杆; 3)加大隧道边墙轮廓曲率并优化隧道二次衬砌型式为圆顺型; 4)隧道预留变形量加大至30 cm; 5)隧道二次衬砌内净空预留50 cm补强空间; 6)隧道拱部设置42小导管超前支护。现场岩堆段采取以上措施后已顺利施工通过,根据洞内外监测结果显示,结构在安全可控范围内。  相似文献   

3.
以山西某浅埋偏压隧道为依托工程,全面分析了隧道洞口段地质灾害的基本特性及形成机理,采用大型有限元软件对其施工过程进行了数值模拟分析,得出隧道洞口段支护结构受力及变形特性,提出了综合处治措施。研究结果表明:浅埋偏压隧道洞口段地质灾害主要为冒顶事故、坡面崩塌、初期支护开裂、钢拱架严重弯曲变形;其形成机理主要有地形地质条件、受力状态、气象因素、施工设计因素;隧道洞口段初期支护结构受力极不均衡,水平应力较大,右侧初期支护承受较大的围岩压力;采用地表覆盖封闭、增设临时支撑、反压回填、CD法施工、小导管注浆加固等措施可有效控制避免其施工地质灾害。研究成果可为类似工程的设计、施工提供技术支撑。  相似文献   

4.
童文甫 《隧道建设》2009,(Z2):205-207
作者以某三线大跨隧洞口浅埋软弱围岩段初期支护严重变形的处理过程为例,分析隧道洞口软弱围岩地层段施工时初期支护下沉变形严重的原因,介绍变形段整治方案及处理要点,并提出隧道浅埋软弱围岩段预防下沉的技术措施,为类似工程处理提供借鉴。  相似文献   

5.
为减小双洞八车道特大跨度隧道洞口Ⅴ级石质围岩后行导坑爆破对已完成支护结构的不利影响,该文以平潭牛寨山隧道工程为例,针对原设计双侧壁导坑法在后行的临近导坑爆破时,易将原先已施工完成的临时钢支撑震塌,提出取消临时横向支撑的变更方案1,以及带竖向支撑的上下台阶法(变更方案2),再利用有限元法计算,模拟3种不同开挖工法对隧道变形及受力的影响。计算结果表明:3种方案引起的拱顶沉降相差较小,最大相差约11.8%;变更方案2引起的围岩应力最大,但变更方案2同时取消了左右侧壁导坑的横向支撑以及左右侧壁导坑下台阶的竖向支撑,大大简化了施工工序。最后,结合监测数据进行分析,隧道结构安全稳定,变更方案2不仅合理可靠,而且加快了施工进度,节约了造价。  相似文献   

6.
目前国内外常见隧道扩建施工大都采用传统新建隧道的施工方法,但由于传统开挖方法忽略了原隧道衬砌对围岩的长期支撑稳定优势,降低了施工效率。依托重庆渝州隧道扩建施工实例对扩建优化施工方案进行了深入研究,提出了浅埋隧道单侧扩建优化施工方案,即横向采用合理拱轴线开挖,纵向采用跳槽开挖的新方法。通过现场监控量测和ANSYS三维有限元模拟还原施工全过程进行对比分析。采用优化施工方案时,随着开挖掌子面的推进,原隧道衬砌受压应力计算值增大,纵向跳槽开挖时未拆除的原隧道衬砌能够发挥柱的作用,承担因跳槽开挖而产生的围岩压力,可有效提高施工安全稳定性。横向采用合理拱轴线开挖,使得开挖后围岩压力传递更加合理,并显著降低了初期支护结构拉应力和一定程度上增加了初期支护结构压应力。数值计算结果及现场监控量测数据对比显示,浅埋隧道单侧扩建开挖方案优化后拱顶位移比现状开挖方式小约16%~20%,且拱顶基本不出现受拉区,证明优化后的开挖方案在地下工程开挖卸荷时改变了原围岩的应力路径,能够充分调动围岩的自稳能力。故采用优化施工方案不但能够减少拱顶沉降,降低衬砌的拉应力,还能在保证施工安全的同时缩短施工工期,为今后的类似隧道扩建工程提供借鉴。  相似文献   

7.
隧道软弱围岩的卸荷特征与大变形控制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
隧道软弱围岩大变形往往表现出时效性的流变变形特征,对此特征提出了一种环状间隔式衬砌与主动性卸载相结合的永久性支护理念。在合理的简化下建立了隧道衬砌段与非衬砌段的隧道力学分析模型,并在围岩常用蠕变模型、Mohr-Coulomb强度准则和非关联塑性流动法则基础上,对支护段围岩进行黏弹塑性求解,得到了围岩的黏弹塑性变形位移解。在参考现有围岩应力释放模型并确定无支护段围岩应力释放系数之后,对无支护隧道段围岩进行求解,得到了围岩的黏弹塑性变形位移表达式,建立了未支护洞段围岩位移与支护洞段围岩压力的关系。算例分析表明,理论分析与实际工程中围岩的应力和位移的变化是相吻合的。  相似文献   

8.
文章以某三线大跨隧洞口浅埋软弱围岩段初期支护严重变形的处理过程为例,分析隧道洞口软弱围岩地层段施工时初期支护下沉变形严重的原因,介绍变形段整治方案及处理要点,并提出隧道浅埋软弱围岩段预防下沉的技术措施,为类似工程处理提供借鉴经验与教训。  相似文献   

9.
针对高地应力软岩隧道开挖时围岩大变形问题,以某隧道圆形扩挖段为背景,采用三台阶法施工和3层初期支护+小导管注浆+二次衬砌的复合结构支护,并通过现场监测、数值模拟和理论计算研究开挖过程中的围岩变形及支护结构受力。结果表明:上、中台阶开挖时的隧道围岩变形速率较大,在仰拱封闭和第3层初期支护施作完成后,隧道变形趋于稳定;采用3层初期支护结构可有效改善隧道周边围岩应力,3层初期支护基本都是受压结构,拱腰和边墙处竖向应力最大,拱顶处水平应力最大;二次衬砌拱腰、拱顶、拱脚和边墙处安全系数均大于规范要求,保证隧道结构安全。  相似文献   

10.
在山岭隧道施工过程中,施作仰拱虽能很好地控制洞室位移,抑制底鼓现象发生,但隧道仰拱的开挖一般都在初期支护基本稳定之后,其开挖会使上部支护结构底角短暂悬空,底角应力释放,从而引起开挖段洞周位移的急剧增加。通过对阎家庄隧道开挖过程的实时监测,分析仰拱开挖前后拱顶下沉和净空收敛的变形量和变形速度,结合ANSYS有限元软件,分析隧道开挖前后初期支护内力的变化。仰拱的施作能使围岩内力分布更加均匀,避免应力集中,但隧道仰拱开挖引起的洞室围岩的变形约占总变形量的25%,需引起施工注意。  相似文献   

11.
为优化高地应力软岩隧道支护结构受力以及控制围岩变形,开展隧道洞型与双层初期支护支护时机研究。首先,通过现场监测数据分析高地应力软岩隧道单、双层初期支护的支护效果及围岩变形规律;然后,采用FLAC3D软件对比分析马蹄形(高跨比0.80)、类圆形(高跨比0.90)、圆形(高跨比1.00)3种洞型下以及第1层初期支护变形达300、350、400 mm时施作第2层初期支护时隧道的受力与变形情况。研究结果表明: 1)对于高地应力Ⅲ级大变形围岩2车道隧道,采用双层初期支护较单层初期支护虽有效控制了围岩变形,但在施工过程中仍出现了拱肩破坏、仰拱开裂等现象; 2)适当增大隧道高跨比可有效降低围岩变形与支护结构受力,高跨比为1.00时效果最好; 3)适当增大第1层初期支护的预留变形量,推迟第2层初期支护的支护时间,支护应力大幅降低,因此,建议第1层初期支护变形达400 mm时施作第2层初期支护。  相似文献   

12.
以老虎山隧道为实例,对超大跨度公路隧道洞口小净距段的施工方案进行研究。结果表明:洞口段超前大管棚进洞和掌子面超前小导管加固措施能够控制围岩变形,减少对中岩柱的影响;控制左、右线先导洞掌子面之间的施工间距,并对中岩柱水平注浆小导管加固,可有效提高中岩柱的整体性与稳定性;初期支护阶段拱部最大变形量为28mm,远小于设计预留变形量,状态稳定。  相似文献   

13.
高水压是山岭隧道建设的重要难题之一,抗水压衬砌是隧道穿越这些区段的常用措施,其衬砌结构断面厚度远大于标准断面。衬砌厚度过大施工相对不便,施工质量不能保证,且不能及时分担水压。针对广西某隧道高水压段,采用双层初期支护和二次衬砌组成的支护结构承受高水压,减小二次衬砌厚度。为了分析双层初期支护的效果与获得基于双层初期支护的支护结构参数,利用有限差分法研究了不同防渗等级的单层与双层初期支护、不同注浆范围及不同二次衬砌厚度对围岩的变形影响和对支护结构的力学状态影响。结果表明:在相同支护体系中,喷射混凝土的不同防渗等级对围岩变形、支护应力影响不大;初期支护的防渗等级相同时,相比于单层初期支护,双层初期支护体系使围岩变形、喷射混凝土应力、二次衬砌的轴力与弯矩均减小40%以上;当拱顶以上水头为90 m且采用防渗等级为P8的双层初期支护时,径向注浆能够有效减小支护应力。当径向注浆范围超过4 m后,注浆对减小支护结构受力的效果不明显;采用双层初期支护体系,注浆范围为4 m时,二次衬砌的厚度设计为40 cm就能保障支护结构处于安全状态;径向注浆条件下,采用双层初期支护+二次衬砌的支护体系能够有效保障隧道高水压段的安全。  相似文献   

14.
本文以甘肃省首座3车道大断面高原黄土公路隧道为依托展开研究,分析了隧道现场监控量测数据、支护结构受力状态及超大断面黄土隧道洞口浅埋段双侧壁导坑法施工的围岩稳定性,并运用有限元数值模拟分析了各个施工阶段隧道初期支护的变形及受力情况,重点阐述了采用双侧壁导坑法在不同施工阶段沉降变形的受力状况,根据现场监测数据和变形状况力学参数计算分析了隧道不同施工阶段围岩变形速率和规律。  相似文献   

15.
依托广西百色达康隧道实际工程,简化隧道施工模型,通过FLAC 3D数值模拟软件构建了隧道施工动态三维模型,模拟了大断面隧道采用双侧壁导坑法施工流程,得到在不同施工步骤时隧道围岩应力、变形,以及隧道衬砌的轴力、弯矩变化情况,探究动态施工过程中围岩变形规律和支护结构受力变化规律,并且分析了隧道向前掘进时距掌子面不同距离的断面拱顶、拱底的变形量,分析了其变化规律,对双侧壁导坑法施工时超前支护与施工量测具有参考作用。数值分析结果表明,隧道开挖过程中隧道拱顶底达到竖直位移极值,左、右拱腰处产生水平位移极值;隧道开挖对前方围岩影响范围大约为隧道跨度;隧道衬砌轴力与弯矩最大值均出现在左侧导洞初期支护中期支护中部偏上,二衬拱脚两侧和隧道洞室顶部和仰拱处,所受内力较大。  相似文献   

16.
李书兵 《隧道建设》2018,38(8):1293-1302
软弱围岩隧道开挖后自稳能力差,易发生大的变形、钢架扭曲等现象。为降低安全风险,依托郑万高铁高家坪隧道进口机械化全断面爆破施工,对支护体系下的围岩压力、钢架应力、初喷混凝土应力、锚杆轴力、围岩内部位移、掌子面挤出变形等进行系统试验研究。试验结果表明: 围岩压力、钢架应力、初喷混凝土应力受岩性条件、施工扰动等因素影响显著,随时间推移均呈现“急剧增大、缓慢增大、波动变化、稳定收敛”的变化规律; 通过锚杆轴力峰值位置可以初步判定围岩塑性区范围约为距洞壁3.0 m。基于现场试验监测,通过数值模拟分析了初期支护结构压应力、轴力和弯矩的分布情况,与现场量测数据相符,较好地反映了初期支护受力特征。本次试验的相关方法、手段和结论对隧道机械化大断面施工软弱围岩变形与支护体系受力研究具有借鉴作用,同时也为建立科学合理的支护结构体系提供了参考。  相似文献   

17.
为研究麻武高速公路角儿尖隧道洞口段开挖对已支护相邻隧洞围岩稳定性的影响,依据角儿尖隧道地质情况,运用FLAC3D数值模拟软件进行模拟计算,并结合现场实测情况,对已支护相邻隧道围岩位移及应力演化规律进行了分析。结果表明:角儿尖隧道洞口段开挖对已支护相邻隧洞围岩变形影响较大,其影响比重在30%左右,实测约为15%;针对角儿尖隧道洞口段开挖过程,应尽量缩短进尺,并控制装药量,将相邻隧洞开挖对已支护隧道的影响降到最低。研究结果为洞口段支护措施优化提供了依据,供类似工程参考。  相似文献   

18.
牛头山隧道为双向6车道大跨度隧道,当开挖至绿泥石云母片岩段时发生了严重的大变形,拱顶最大下沉达1.6 m。为解决极软岩隧道大变形问题,通过对大变形围岩和初支变形特征、发生原因的分析,确定了"分台阶大预留、快开挖、双层强支护、早封闭"的大变形处理原则和方案。施工期间通过对双侧壁、单侧壁法和三台阶法施工的现场实践,证明依托工程采用短台阶开挖工法控制围岩大变形具有十分显著的效果。在确定采用三台阶开挖方法后,对拟定的应力释放层扩挖+双层H型钢初期支护和双层H型钢初期支护+108锁脚钢管两种支护方案,在左右洞进行了平行试验,结果发现采用双层H型钢支护+108锁脚钢管对于控制大变形效果良好,最终采用该方案顺利完成了绿泥石片岩段施工。  相似文献   

19.
以湖南炎汝(炎陵-汝城)高速公路熊猫洞隧道为背景,采用MIDAS/GTS有限元软件对该隧道进口浅埋偏压段施工过程进行二维施工模拟,比较了先开挖深埋侧主洞和先开挖浅埋侧主洞两种施工顺序,获得了浅埋偏压连拱隧道在采用不同施工顺序施工时隧道变形、中隔墙及初期支护结构的应力和位移等变化情况.计算结果表明对于浅埋偏压连拱隧道洞口段,应采用先开挖埋深较浅一侧隧道,再开挖埋深较深一侧隧道的施工顺序.  相似文献   

20.
济南至泰安高速公路北崖头隧道围岩为全风化花岗岩,设计采用双侧壁导坑法掘进。洞口段现场监测数据反映变形非常小。拟将剩余隧段更换三台阶法施工。本文以隧道洞口和洞身典型断面分别建立数值模型,对隧道围岩稳定性进行分析,结果表明:隧道进口段的洞周变形值较小(拱顶最大沉降值为4. 9mm)且数值与监测结果较为吻合,围岩受力较小,塑性区主要分布在`隧道拱顶上方3m位置;隧道洞身段在分别采用两种施工方案时,洞周变形均较小(最大值仅为2mm左右),围岩受力情况良好,塑性区仅在使用三台阶法的洞口部分少量出现,考虑到经济和施工复杂度的情况,三台阶法是更有利的施工方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号