首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acceleration is an important driving manoeuvre that has been modelled for decades as a critical element of the microscopic traffic simulation tools. The state-of-the art acceleration models have however primarily focused on lane based traffic. In lane based traffic, every driver has a single distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the stimulus from the governing leader. However, only the applied accelerations are observed in the trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore cannot be directly applied to traffic streams with weak lane discipline.This prompts the current research where we present a latent leader acceleration model. The model has two components: a random utility based dynamic class membership model (latent leader component) and a class-specific acceleration model (acceleration component). The parameters of the model have been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. Results indicate that the probability of a given front vehicle of being the governing leader can depend on the type of the lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are compared against a simpler acceleration model (where the leader is determined deterministically) and a significant improvement in the goodness-of-fit is observed. The proposed models, when implemented in microscopic traffic simulation tools, are expected to result more realistic representation of traffic streams with weak lane discipline.  相似文献   

2.
3.
The two models FOTO (Forecasting of Traffic Objects) and ASDA (Automatische Staudynamikanalyse: Automatic Tracking of Moving Traffic Jams) for the automatic recognition and tracking of congested spatial–temporal traffic flow patterns on freeways are presented. The models are based on a spatial–temporal traffic phase classification made in the three-phase traffic theory by Kerner. In this traffic theory, in congested traffic two different phases are distinguished: “wide moving jam” and “synchronized flow”. The model FOTO is devoted to the identification of traffic phases and to the tracking of synchronized flow. The model ASDA is devoted to the tracking of the propagation of moving jams. The general approach and the different extensions of the models FOTO and ASDA are explained in detail. It is stressed that the models FOTO and ASDA perform without any validation of model parameters in different environmental and traffic conditions. Results of the online application of the models FOTO and ASDA at the TCC (Traffic Control Center) of Hessen near Frankfurt (Germany) are presented and evaluated.  相似文献   

4.
Due to its importance, lots of investigations had been carried out in the last four decades to study the relationship between phase duration and vehicle departure amount. In this paper, we aim to build appropriate distribution models for start-up lost time and effective departure flow rate, by considering their relations with the frequently mentioned departure headway distributions. The motivation behind is that distribution models could provide richer information than the conventional mean value models and thus better serve the need of traffic simulation and signal timing planning. To reach this goal, we first check empirical data collected in Beijing, China. Tests show that the departure headways at each position in a discharging queue are very weakly dependent or almost independent. Based on this new finding, two distribution models are proposed for start-up lost time and effective flow rate, respectively. We also examine the dependences of departure headways that are generated by three popular traffic simulation software: VISSIM, PARAMICS and TransModeler. Results suggest that in VISSIM, the departure headways at different positions are almost deterministically dependent and may not be in accordance with empirical observations. Finally, we discuss how the dependence of departure headways may influence traffic simulation and signal timing planning.  相似文献   

5.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

6.
The macroscopic traffic flow models developed from the car following models of Gazis et al. (1961) are shown to have a flaw in that they do not meet certain of the boundary conditions that researchers have said that they do. This does not affect many existing models but, nevertheless, should be cleared up.  相似文献   

7.
8.
The article describes a criterion based on functional, environmental and economic aspects for comparing conventional roundabouts with innovative one- or two-level roundabouts. We compared the performances of eight roundabout types, differing in geometric layout, number of lanes and traffic flow regulation from each other, with regard to vehicle delays and CO2, NOx, PM2.5 and PM10 pollutant emissions. Recently-designed roundabouts – target roundabouts and flyover roundabouts – have also been studied for their undoubted practical interest. By means of closed-form capacity models and CORINAIR methodology, several traffic simulations were carried out to examine a typical annual traffic demand curve in a suburban context, three different distribution test matrices for traffic flows (ρ1, ρ2, ρ3) and maximum annual traffic flow values Qmax ranging between 1300 and 3300 veh/h.Estimating vehicle delays and annual pollutant emissions, along with construction and management costs, allowed obtaining overall costs for each roundabout examined, in function of traffic demand and several other parameters. Thanks to these analyses, we identified the roundabout types which best suit to each traffic condition.  相似文献   

9.
10.
Car-following models are always of great interest of traffic engineers and researchers. In the age of mass data, this paper proposes a nonparametric car-following model driven by field data. Different from most of the existing car-following models, neither driver’s behaviour parameters nor fundamental diagrams are assumed in the data-driven model. The model is proposed based on the simple k-nearest neighbour, which outputs the average of the most similar cases, i.e., the most likely driving behaviour under the current circumstance. The inputs and outputs are selected, and the determination of the only parameter k is introduced. Three simulation scenarios are conducted to test the model. The first scenario is to simulate platoons following real leaders, where traffic waves with constant speed and the detailed trajectories are observed to be consistent with the empirical data. Driver’s rubbernecking behaviour and driving errors are simulated in the second and third scenarios, respectively. The time–space diagrams of the simulated trajectories are presented and explicitly analysed. It is demonstrated that the model is able to well replicate periodic traffic oscillations from the precursor stage to the decay stage. Without making any assumption, the fundamental diagrams for the simulated scenario coincide with the empirical fundamental diagrams. These all validate that the model can well reproduce the traffic characteristics contained by the field data. The nonparametric car-following model exhibits traffic dynamics in a simple and parsimonious manner.  相似文献   

11.
To connect microscopic driving behaviors with the macro-correspondence (i.e., the fundamental diagram), this study proposes a flexible traffic stream model, which is derived from a novel car-following model under steady-state conditions. Its four driving behavior-related parameters, i.e., reaction time, calmness parameter, speed- and spacing-related sensitivities, have an apparent effect in shaping the fundamental diagram. Its boundary conditions and homogenous case are also analyzed in detail and compared with other two models (i.e., Longitudinal Control Model and Intelligent Driver Model). Especially, these model formulations and properties under Lagrangian coordinates provide a new perspective to revisit the traffic flow and complement with those under Eulerian coordinate. One calibration methodology that incorporates the monkey algorithm with dynamic adaptation is employed to calibrate this model, based on real-field data from a wide range of locations. Results show that this model exhibits the well flexibility to fit these traffic data and performs better than other nine models. Finally, a concrete example of transportation application is designed, in which the impact of three critical parameters on vehicle trajectories and shock waves with three representations (i.e., respectively defined in x-t, n-t and x-n coordinates) is tested, and macro- and micro-solutions on shock waves well agree with each other. In summary, this traffic stream model with the advantages of flexibility and efficiency has the good potential in level of service analysis and transportation planning.  相似文献   

12.
With the availability of large volumes of real-time traffic flow data along with traffic accident information, there is a renewed interest in the development of models for the real-time prediction of traffic accident risk. One challenge, however, is that the available data are usually complex, noisy, and even misleading. This raises the question of how to select the most important explanatory variables to achieve an acceptable level of accuracy for real-time traffic accident risk prediction. To address this, the present paper proposes a novel Frequent Pattern tree (FP tree) based variable selection method. The method works by first identifying all the frequent patterns in the traffic accident dataset. Next, for each frequent pattern, we introduce a new metric, herein referred to as the Relative Object Purity Ratio (ROPR). The ROPR is then used to calculate the importance score of each explanatory variable which in turn can be used for ranking and selecting the variables that contribute most to explaining the accident patterns. To demonstrate the advantages of the proposed variable selection method, the study develops two traffic accident risk prediction models, based on accident data collected on interstate highway I-64 in Virginia, namely a k-nearest neighbor model and a Bayesian network. Prior to model development, two variable selection methods are utilized: (1) the FP tree based method proposed in this paper; and (2) the random forest method, a widely used variable selection method, which is used as the base case for comparison. The results show that the FP tree based accident risk prediction models perform better than the random forest based models, regardless of the type of prediction models (i.e. k-nearest neighbor or Bayesian network), the settings of their parameters, and the types of datasets used for model training and testing. The best model found is a FP tree based Bayesian network model that can predict 61.11% of accidents while having a false alarm rate of 38.16%. These results compare very favorably with other accident prediction models reported in the literature.  相似文献   

13.
Various methods of restricting automobile traffic, by price (tolls) or by quantity (odd/even license plates or limited days of traffic), are tested in a survey (N  400) about attitudes toward traffic restrictions in Lyon, France. Ordered probit models with random-effects panel allow us to estimate the survey respondents’ perceptions of these methods, as well as the roles of individual socio-demographic characteristics in the formation of these perceptions. Both the restriction of automobile traffic and its regulation by congestion (waiting in line) are widely considered unjust by the respondents, regardless of whether they work and whether they are drivers or non-drivers. Their attitudes towards tolls justified by the pollution caused by automobile traffic are less negative. As regards compensation, in addition to emergency vehicles and those that transport people with limited mobility, respondents believe car-pooling ought to benefit of a toll exemption. The support for a reduced rate for low-income users shows a concern for justice to which it will be necessary to respond. The respondents’ socio-professional status, level of education, car use or non-use, and residence inside or outside of the toll zone clearly play a role in their perceptions of these methods of regulation and compensation.  相似文献   

14.
Despite the availability of large empirical data sets and the long history of traffic modeling, the theory of traffic congestion on freeways is still highly controversial. In this contribution, we compare Kerner’s three-phase traffic theory with the phase diagram approach for traffic models with a fundamental diagram. We discuss the inconsistent use of the term “traffic phase” and show that patterns demanded by three-phase traffic theory can be reproduced with simple two-phase models, if the model parameters are suitably specified and factors characteristic for real traffic flows are considered, such as effects of noise or heterogeneity or the actual freeway design (e.g. combinations of off- and on-ramps). Conversely, we demonstrate that models created to reproduce three-phase traffic theory create similar spatiotemporal traffic states and associated phase diagrams, no matter whether the parameters imply a fundamental diagram in equilibrium or non-unique flow-density relationships. In conclusion, there are different ways of reproducing the empirical stylized facts of spatiotemporal congestion patterns summarized in this contribution, and it appears possible to overcome the controversy by a more precise definition of the scientific terms and a more careful comparison of models and data, considering effects of the measurement process and the right level of detail in the traffic model used.  相似文献   

15.
In this research, we propose a methodology to develop OD matrices using mobile phone Call Detail Records (CDR) and limited traffic counts. CDR, which consist of time stamped tower locations with caller IDs, are analyzed first and trips occurring within certain time windows are used to generate tower-to-tower transient OD matrices for different time periods. These are then associated with corresponding nodes of the traffic network and converted to node-to-node transient OD matrices. The actual OD matrices are derived by scaling up these node-to-node transient OD matrices. An optimization based approach, in conjunction with a microscopic traffic simulation platform, is used to determine the scaling factors that result best matches with the observed traffic counts. The methodology is demonstrated using CDR from 2.87 million users of Dhaka, Bangladesh over a month and traffic counts from 13 key locations over 3 days of that month. The applicability of the methodology is supported by a validation study.  相似文献   

16.
This article proposes an efficient multiple model particle filter (EMMPF) to solve the problems of traffic state estimation and incident detection, which requires significantly less computation time compared to existing multiple model nonlinear filters. To incorporate the on ramps and off ramps on the highway, junction solvers for a traffic flow model with incident dynamics are developed. The effectiveness of the proposed EMMPF is assessed using a benchmark hybrid state estimation problem, and using synthetic traffic data generated by a micro-simulation software. Then, the traffic estimation framework is implemented using field data collected on Interstate 880 in California. The results show the EMMPF is capable of estimating the traffic state and detecting incidents and requires an order of magnitude less computation time compared to existing algorithms, especially when the hybrid system has a large number of rare models.  相似文献   

17.
This study focuses on information recovery from noisy traffic data and traffic state estimation. The main contributions of this paper are: i) a novel algorithm based on the compressed sensing theory is developed to recover traffic data with Gaussian measurement noise, partial data missing, and corrupted noise; ii) the accuracy of traffic state estimation (TSE) is improved by using Markov random field and total variation (TV) regularization, with introduction of smoothness prior; and iii) a recent TSE method is extended to handle traffic state variables with high dimension. Numerical experiments and field data are used to test performances of these proposed methods; consistent and satisfactory results are obtained.  相似文献   

18.
Recent empirical studies have found widespread inaccuracies in traffic forecasts despite the fact that travel demand forecasting models have been significantly improved over the past few decades. We suspect that an intrinsic selection bias may exist in the competitive project appraisal process, in addition to the many other factors that contribute to inaccurate traffic forecasts. In this paper, we examine the potential for selection bias in the governmental process of Build-Operate-Transfer (BOT) transportation project appraisals. Although the simultaneous consideration of multiple criteria is typically used in practice, traffic flow estimate is usually a key criterion in these appraisals. For the purposes of this paper, we focus on the selection bias associated with the highest flow estimate criterion. We develop two approaches to quantify the level and chance of inaccuracy caused by selection bias: the expected value approach and the probability approach. The expected value approach addresses the question “to what extent is inaccuracy caused by selection bias?”. The probability approach addresses the question “what is the chance of inaccuracy due to selection bias?”. The results of this analysis confirm the existence of selection bias when a government uses the highest traffic forecast estimate as the priority criterion for BOT project selection. In addition, we offer some insights into the relationship between the extent/chance of inaccuracy and other related factors. We do not argue that selection bias is the only reason for inaccurate traffic forecasts in BOT projects; however, it does appear that it could be an intrinsic factor worthy of further attention and investigation.  相似文献   

19.
This study compares several transportation-related air quality models. Two line-source models were used: Caline4 (California Department of Transportation) and Hiway2 (US Environmental Protection Agency). Two mobile-source models, Mobile5b (US Environmental Protection Agency) and COPERT3 (European Environment Agency), along with real-world emission factors were used and evaluated as well. Model predictions of NOx concentrations were compared to measured values at two sites in Israel, differing by fleet composition and physical layout (‘at-grade’ and a ‘cut/depressed’ road sections). The process indicated that emission factors generated by COPERT3 are the most appropriate for free flowing traffic situations in Israel. Predictions by both line-source models were similar when applied to ‘at-grade’ road sections. When applied to ‘cut/depressed’ sections, Hiway2 better predicted concentrations during unstable conditions, while Caline4 better predicted concentrations during stable conditions and peak concentrations.  相似文献   

20.
The k-nearest neighbor (KNN) model is an effective statistical model applied in short-term traffic forecasting that can provide reliable data to guide travelers. This study proposes an improved KNN model to enhance forecasting accuracy based on spatiotemporal correlation and to achieve multistep forecasting. The physical distances among road segments are replaced with equivalent distances, which are defined by the static and dynamic data collected from real road networks. The traffic state of a road segment is described by a spatiotemporal state matrix instead of only a time series as in the original KNN model. The nearest neighbors are selected according to the Gaussian weighted Euclidean distance, which adjusts the influences of time and space factors on spatiotemporal state matrices. The forecasting accuracies of the improved KNN and of four other models are compared, and experimental results indicate that the improved KNN model is more appropriate for short-term traffic multistep forecasting than the other models are. This study also discusses the application of the improved KNN model in a time-varying traffic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号