首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
机车车辆滚动轴承故障BP网络诊断方法   总被引:9,自引:0,他引:9  
神经网络故障诊断技术已成功的应用于航空航天领域,但在铁路系统应用极少。文中介绍了神经网络故障诊断理论方法,并以BP网络为基础,实现了机车车辆滚动轴承的多故障诊断。  相似文献   

2.
针对铁道车辆滚动轴承故障诊断,提出1种改进的小波包与BP神经网络相结合的故障诊断方法,并开发出基于该方法的铁道车辆滚动轴承故障诊断系统。用压电加速度传感器采集轴承试验台的模拟故障轴承振动信号,对采集到的信号先进行小波降噪,再通过小波包分解,构造特征向量,以此作为故障样本对改进的BP网络进行训练,实现智能化故障诊断。实验结果表明,基于该方法的故障诊断系统能够很好地诊断出铁道车辆滚动轴承内圈、外圈及滚动体表面出现的疲劳、剥落、磨损和裂纹等故障,具有实际工程应用价值。  相似文献   

3.
滚动轴承的运行状态对整体机构的工作状态影响很大,防止因滚动轴承失效而产生的安全事故极为重要。而一维信号只利用卷积神经网络CNN(Convolutional Neural Networks)输出结果时无法充分利用数据间的时序信息的问题,因此,文中结合门控循环单元GRU(Gated Recurrent Unit)在处理时序数据所具有的优势,提出了一种门控循环残差网络结构,将CNN在强大的特征提取的优点与GRU处理时序数据的优点有机结合起来。为了验证算法的有效性,采用凯斯西储大学轴承数据集与齿轮箱轴承台架试验进行轴承故障诊断分析,同时引入常见神经网络作为对比,检验不同模型的分类性能。结果表明,在相同试验条件下相较于卷积神经网络等深度学习网络,文中算法具有更高的故障识别准确度和稳定性。  相似文献   

4.
本文提出了一个基于改进粒子群优化算法的BP神经网络优化模型来进行轴承故障诊断,此模型融合粒子群优化算法的全局寻优能力和BP神经网络算法的局部搜索的优势,有效地防止了网络陷入局部极小值,同时又保证了诊断结果的精确性.仿真结果表明机车滚动轴承故障得到了有效诊断.相比于常规的BP神经网络模型,此方法不仅改进网络的收敛速度并且提高了预测准确性.  相似文献   

5.
王喜成  孟祥雨 《铁道车辆》1997,35(11):51-54
货车滚动轴承故障诊断装置是车辆段和车轮厂轮对检修生产线上的关键设备之一。本文介绍了该装置的基本结构、诊断原理、专家系统和应用试验结果。  相似文献   

6.
BP神经网络方法在机车轴承故障诊断中的应用   总被引:5,自引:0,他引:5  
应用BP神经网络理论对机车轴承的故障进行诊断,同时结合VISUAL BASIC开发出基于用户界面的应用程序。  相似文献   

7.
8.
滚动轴承故障诊断技术的研究(下)   总被引:2,自引:0,他引:2  
  相似文献   

9.
张丽娟 《铁道车辆》2002,40(1):38-39
目前,在车辆段使用的滚动轴承故障诊断装置主要有电脑轴承分析仪、轮对轴承自动诊断机等.这些设备的投入使用,提高了轴承故障诊断的科学性和先进性,在现场生产中起到积极的作用.但在使用过程中存在的一些问题,需待进一步解决及完善. 1现场使用情况 1.1电脑轴承分析仪 该分析仪用于诊断红外线轴温探测点预报轴温超高而甩车的滚动轴承故障,具有轻便、使用简单的优点,但在使用过程中发现有如下几个问题:  相似文献   

10.
王涛  张兵  孙琦 《机车电传动》2020,(1):102-107
针对高速列车齿轮箱滚动轴承早期故障特征提取困难的情况,提出了基于经验小波变换(Empirical WaveletTransform,EWT)和奇异值分解(Singularvaluedecomposition,SVD)的轴承故障诊断方法。首先对信号进行EWT变换得到各阶固有模态分量,然后计算各阶固有模态分量的峭度值并选取较大峭度值对应的分量。将选取的分量构造矩阵进行正交化奇异值分解,选择合适的阶数重构信号,最后对重构信号进行Hilbert包络解调分析。分别对仿真信号和滚动轴承发生外环故障进行分析,可以较为清晰地看到滚动轴承故障特征。研究结果表明,结合EWT、峭度系数和SVD的诊断方法可以准确、快速地提取轴承故障信息,从而可以对滚动轴承进行有效诊断。  相似文献   

11.
针对滚动轴承故障诊断问题,提出一种融合一维卷积神经网络(1D CNN)和麻雀算法优化支持向量机(SSA-SVM)的网络结构。该网络结构通过卷积运算对原始时域振动信号直接进行特征提取,将提取到的特征输入到麻雀算法优化的支持向量机中,使用支持向量机代替Softmax进行分类。利用滚动轴承故障数据进行验证,此方法故障诊断精度高达0.983,高于其他网络结构,且整体网络结构简单,有一定实际应用价值。  相似文献   

12.
讨论了电力机车牵引电机滚动轴承振动法故障诊断方案,介绍了JDZ-1型机车轴承检测仪中采用的信号处理,数据分析、诊断参数选择以及轴承状态判别等关键技术,并介绍了该仪器用于SS3电力机车的现场诊断实例。  相似文献   

13.
针对滚动轴承在实际运行环境中同时存在变负荷和变噪声的复合工况干扰而产生的故障诊断效果不理想的问题,提出了一种用于滚动轴承变工况故障诊断的一维残差卷积神经网络方法。将归一化后整理完的原始轴承振动信号输入到网络模型中,利用具有残差连接的多个一维卷积层提取特征,再经过多个卷积池化,最后输入到Softmax层进行分类,输出轴承振动信号的故障类型。将所提方法与一维卷积神经网络(CNN)、LeNet-5和AlexNet几个经典模型进行对比分析,结果表明,本文方法在变噪声实验和变负荷实验中的平均准确率分别为94.16%和95.31%,均高于其他经典神经网路,具有较强的抗噪性和泛化性能力。  相似文献   

14.
讨论了电力机车牵引电机滚动轴承振动法故障诊断方案,介绍了JDZ-1型机车轴承检测仪中采用的信号处理、数据分析、诊断参数选择以及轴承状态判别等关键技术,并介绍了该仪器用于SS3型电力机车的现场诊断实例.  相似文献   

15.
基于卷积神经网络(Convolution Neural Network,CNN)的智能诊断方法在轴承故障诊断中应用广泛,但是大多数诊断模型以单源信息输入为主,这将影响基于CNN的故障诊断准确性和可靠性。针对这个问题,文章提出一种基于双通道特征融合的滚动轴承故障诊断方法。首先利用多重Q因子连续Gabor小波变换(Multiple Q-factor Continuous Gabor Wavelet Transform,CMQGWT)和快速谱相干(Fast Spectral Coherence,Fast-SC)分别构造滚动轴承振动信号的时频分析图;然后搭建1个具有双输入通道的CNN网络模型,通过特征融合层将各个通道提取的深度时频特征融合成1个新的特征;最后利用分类器输出诊断结果。在高速列车滚动轴承单故障和复合故障的分类识别试验中,较之于单输入通道的CNN模型,该模型具有更高的诊断准确性和鲁棒性。  相似文献   

16.
针对轨道车辆的滚动轴承故障诊断问题,提出了一种小波包与RBF神经网络相结合的故障诊断方法.首先对采集到的振动数据进行小波消噪,然后利用小波包分解提取故障信号的能量特征向量,最后利用提取的能量特征训练RBF神经网络,进行故障诊断.诊断结果表明,基于小波包和RBF神经网络的轨道车辆滚动轴承故障诊断方法能够较好的诊断出轨道车辆的轴承故障类型,具有一定的实际应用价值.  相似文献   

17.
针对在强烈背景噪声和随机脉冲干扰下滚动轴承故障信号难以提取的问题,提出了一种改进的峭度图方法进行滚动轴承的故障诊断。该方法先通过计算特定频带信号包络的功率谱幅值的峭度,再按照峭度最大原则确定最优解调频带,然后根据最优解调频带获得带通滤波后的解调信号,通过对解调信号进行频谱分析来识别滚动轴承的故障及其类型。通过仿真和试验两种方式,对比分析了改进峭度图法和快速峭度图法诊断滚动轴承故障的效果,验证了改进峭度图法的有效性。分析结果表明:改进峭度图法比快速峭度图法能够更加准确地确定共振频带,并且在强烈背景噪声干扰下也能准确识别轴承故障。  相似文献   

18.
高速列车轴承的故障特征提取较为困难,针对这一问题,在经验小波变换(Empirical Wavelet Transform,EWT)的基础上,提出了一种基于频谱趋势与频带合并的改进EWT方法,并将其应用于高速列车轴承的故障诊断。该方法首先利用经验模态分解,根据IMF分量判断准则,提取故障信号的频谱趋势,从而得到初始的频谱分界点;然后计算各初始频带的故障信息判断指标,得到自适应阈值,判断初始频带的有效性,通过对无效频带的合并完成频谱的重新划分;最后进行经验小波变换,将各频带通过正交滤波器组,对得到的各分量信号进行Hilbert变换,得到轴承的故障特征频率。通过仿真和试验验证,改进后的EWT方法可以准确地提取出轴承故障特征频率的基频和倍频成分,有效地确定轴承故障。  相似文献   

19.
针对目前车辆检修、运用中人工判断轴承故障随意性较大的问题,采用声发射技术研制开发了RD2货车滚动轴承故障诊断仪,较好地解决了运输安全中的各种问题,为RD2货车滚动轴承故障的准确判断提供了有效手段.文中介绍了该诊断仪的工作原理、电路设计、技术指标、技术特点及使用效果.  相似文献   

20.
为了准确识别城轨列车滚动轴承故障类型,研究了一种基于经验模态分解(EMD,Empirical Mode Decomposition)和包络分析的滚动轴承故障诊断方法。对滚动轴承的振动信号进行EMD分解,得到若干个本征模态函数(IMF,Intrinsic Mode Function)之和,对包含主要信息成分的IMF分量作包络分析,根据包络谱的故障特征频率判断滚动轴承故障类型。实验结果表明,该方法能够准确有效地识别城轨列车滚动轴承的故障类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号