首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用可编程序计算器对公路测量中的缓和曲线,圆曲线测设数据进行编程计算,外业工作中,只需输入曲线半径,缓和曲线长度,转向角及相应的弧长,便可快速,准确地获得曲线综合元素数据以及偏角法或切线支距法详细设曲线的数据。  相似文献   

2.
用电子计算器直接按公式计算圆曲线的各要素,不仅较用曲线测设表方便简捷,而且不受曲线表内容的局限,同时可以完全避免误差。特别是在野外施测时,只要随身携带一块袖珍计算器,便能随时计算出测设工作中所需的一切数据和解决各种疑难问题。现举例说明于下:例一:设有一圆曲线,其交角α=18°17′,半径 R=400米,如图1所示,曲线起点 B.C.的桩号为 K6+411,02,规定每20米测设一桩,求各桩点之偏角。  相似文献   

3.
《公路工程技术标准》规定:三级和三级以上公路的平曲线,当半径R小于规范规定不设超高的最小半径时,要设置缓和曲线。在路线勘测中,测设缓和曲线和测设圆曲线一样,常用偏角法进行测量。所谓偏角法,实际上是一种极坐标法,它借助经纬仪控制偏角,用弦长控制曲线上的点到坐标原点的距离,确定曲线上各点在地面的位置。实地测量中,由于地形地物影响经常遇到经纬仪不通视的情况,为了克服不通视的问题,唯一  相似文献   

4.
讨论了采用复曲线时经常遇到的副曲线(第二圆曲线)半径的确定问题,推导出了副曲线半径的迭代计算公式,并给出了用切线支距法或偏角法测设中间缓和曲线时其坐标和偏角的计算公式,这些公式有助于现场技术人员进行复曲线的设计和测设  相似文献   

5.
在路线测量时,碰到虚交点角桩,都要查三角函数表或对数表来计算甲乙边长。由于查表次数多、手续比较麻繁,所以计算容易出错。现在提出用曲线表计算虚交点角桩的甲乙边长的方法供大家参考。举例: 1.已知:甲乙点的偏角及间距,如图。 2.当半径10公尺时,切线长:乙点切线长6.20( /甲乙点切线之和 12.53公尺甲点切线长 6.33公尺 3.求间距为15.57公尺时的复曲线半径:R_复=15.57×10/12.53=12.41公尺 4.当半径为12.41公尺时,甲乙点的切线长: T_甲=6.33×12.41=7.85公尺 T_乙=6.20×12.41=7.69公尺 5.求УТИ31偏角为128°17′(64°43′ 63°34′)。R_复=12.41公尺时的切线长查R=10公尺偏角128°17′T.=20.63公尺 T=20.63×12.41=25.58公尺  相似文献   

6.
如图设为一个公路圆曲线,A为圆曲线的起点,B为圆曲线的终点,P为转角点,切线长为T,园曲线半径为R。如果圆曲线上有一个待定点Q,那么此Q点除了可用一般方法(例如切线支距法,偏角法等等)外,也可以用切线外距定出。设圆曲线上有一点D,而AQ=QD=l,如果通过D作一圆曲线的切线,并且与AP(或者BP)相交于F,交角为α,那么此时FQ=e即为AD=2l段  相似文献   

7.
在测量和计算曲线偏角时,有一个简易方法,不仅减少偏角累加的麻烦,而且可以避免在郊外计算偏角所发生的错误。现在就将这种计算和实际测量曲线偏角方法简单介绍如下:  相似文献   

8.
4 曲线设计 4.1 概述   设计缓和竖曲线,需要知道曲线在任意桩号处的高程。实际上,转坡点(PVI)的桩号和高程一般会和曲线参数A、r和l(或A、l和L)一起作为已知条件给出。这样,在求出直缓点TS和缓直点ST的高程后,也就可以计算出缓圆点SC和圆缓点CS的高程了,计算公式如下:  相似文献   

9.
在林区公路测设中,除测设越岭线较困难外,合理选配圆曲线半径,也是不那么容易的事。如何选配好圆曲线半径呢?根据我多年的测设实践,提出如下几点意见: 一、根据林业部颁布的“公路规程”,乙类地区,林区三级公路的圆曲线半径尽量选用75米以上。大于或等于75米的圆曲线半径,不设超高和加宽;小于75米的圆曲线半径,必须根据“公路规程”的要求,设置超高和加宽。  相似文献   

10.
随着高等级公路的建设,在公路路线的测设中常遇到大半径长曲线的施测工作,按常规的偏角法,支距法或弦线偏距法尤其不足。 本文测设方法,采用分段施测,逐段闭合;先整体后局部。把大半径长曲线分段为200m-300m为宜,找出曲线的分段点;然后根据道路沿线导线点放出分段点;最后在相邻的分段点内,利用分段点放出各加密点。这既保证了测设质量,又加快了测设速度,具有十分显著的技术经济效益。  相似文献   

11.
在公路测量中,选线人员常常通过查表计算、或展点绘图以选定平曲线半径,不仅操作较繁,携带的书表工具也较多,今推荐一种“平曲线半径选定图”可供三、四级公路使用,操作简单,能迅速得出答案,精度亦能满足要求。对于计算上较繁的两点虚交、三点虚交和多点虚交曲线的半径选定,本图优点尤为突出,特别是在鸡爪地形布线,一般常需多次调正线位,若采用本图,  相似文献   

12.
在测量既有铁路曲线时,传统的测量方式是偏角法,计算曲率和拨距的方法是渐伸线法.这种方法的测量效率低,计算结果误差大,因此正逐渐被坐标法代替.针对坐标法,研究了联合采用3点定圆、3点定缓和加权平均来加速计算测点曲率的方法.更重要的是,为了在测点曲率基础上,在不需人工编辑初始条件的情况下,自动识别各测点所属的曲线线性,估计铁路曲线参数,计算测点拨距.生产应用表明,这种方法计算过程简单,计算结果可靠.  相似文献   

13.
为满足匝道曲线路段停车视距要求,采用二维停车视距计算方法(横净距法),在考虑匝道所有横断面和路基类型的情况下,分别计算了大小型车在不同设计条件下的横净距数值,以及满足不同设计速度停车视距要求的最小圆曲线半径值。结果表明:通常情况下,基于横净距计算对应最小圆曲线半径较规范规定值更为严格;大货车占比较高时,基于横净距计算对应最小圆曲线半径较以通行小型车为主的情况更为严格;在进行匝道圆曲线设计时,应在匝道圆曲线半径满足规范规定的情况下,可采用基于横净距计算对应的最小圆曲线半径值。  相似文献   

14.
常规的曲线桥梁偏角与墩台中心坐标计算公式复杂且工作量大。文中通过公路中线数学模型,建立了路线中线点、墩台中心和桥粱偏角的函数关系,简化了桥梁偏角与墩台中心坐标的计算。  相似文献   

15.
通常我们在测量实习时,对中桩弯道放样都是采用新切线法与延线支距法的,如果这两种方法不能解决的问题,再用经纬义偏角法来测定的。可是目前我们的经纬仪还不能满足需要,于是我们试行用小平板作图法来代替经纬仪的偏角法(注)。这种方法经过测量实习,认为速度快,操作简单,不受新切线法及延线支距法的条件限制;又不多计算和查表,虽精度不及经纬仪高,和上述相比,适合于低级公路,现介绍于下: 一、图的绘制以设计的半径R选择适当的比例尺画一半圆弧,依据R的大小确定整弦长度,以折线的一段弧长AB=K(曲线长)见图1。A点B.C.作为曲线起点,  相似文献   

16.
公路月刊1958年5月号介绍了“利用外距求曲线上加桩横断面方向”一文,计算手续比较繁杂。现提出改进办法如下:(1)在半径为 P 的的圆线上有两点 A 和 B(图1),B 点的切线 BC 与 A 点的法向  相似文献   

17.
由于某些地区自然环境的特殊性,风压比较大,为了保证行车安全,必须进行在风压向外侧影响下对汽车行驶的横向稳定性分析,得出风压向外侧时圆曲线半径公式并与标准采用的圆曲线半径公式进行比较,提出风压向外侧时的圆曲线半径公式是合理的。同时运用此结论计算出不同海拔、不同等级风影响下的圆曲线一般最小半径值。  相似文献   

18.
根据在公路施工的测量实践,介绍了利用偏角法编制一种应用于fx-4800计算器的程序,计算路线中任意点的中桩边桩坐标。最后结合某公路中有代表性的一段曲线说明这种程序的编制和应用。  相似文献   

19.
曲线路段较其他路段更易发生交通事故,曲线路段上车辆的行驶稳定性及其对交通安全的影响值得深入研究。为研究在高速路圆曲线极限最小半径情况下的车辆稳定性问题,提升道路安全水平,针对经典的公路圆曲线最小半径计算模型中(简称刚体模型)对稳定性与安全性考虑不充分的情况,根据实际市场上主流车型的分布特点及动力参数,创新性地引入车辆悬挂系统。结合车辆在圆曲线上行驶的稳定性指标,构建了基于车辆具有悬挂系统的公路圆曲线最小半径计算模型(简称悬挂模型)。以驾乘人员的舒适度为依据,对模型中横向力系数进行了修正,就各种设计速度对应的公路最小圆曲线半径给出推荐。最后,基于CarSim以及TruckSim创建的仿真,对刚体、悬挂模型稳定性参数的差异进行分析。结果表明:具有悬挂系统的车辆能保持稳定于小半径平曲线,对高速公路的过弯、转向情况适应能力更强。由悬挂模型计算的公路圆曲线极限最小半径偏小,且目前规范中极限最小半径能保证车辆按照设计速度安全行驶,且有足够的安全余量。  相似文献   

20.
为提高车辆在弯道路段的行驶安全性,在分析弯道路段事故形态的基础上,提出弯道行驶安全性评价指标.同时,从车辆侧向稳定性分析角度,建立道路圆曲线半径与弯道路段行驶安全性的定量关系.通过TruckSim与Simulink的联合仿真实验,利用3种典型的弯道行驶工况,对现行规范中规定的标准弯道的行驶安全性进行评价.结果表明:道路圆曲线半径与车辆侧向稳定性呈正相关,车速与其呈负相关.在给定实验工况下,车速为120 km/h,圆曲线半径为500 m时,侧向加速度超过0.4g,横向载荷转移率达到0.7,车辆极易发生侧滑/侧翻;而当车速为40 km/h,圆曲线半径低于60m时,车辆动态响应的幅度虽有所增加,但车辆并不会发生侧滑与侧翻现象.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号