首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过采用约束试件温度应力试验仪 (TSRST)进行应力松弛试验 ,测得在不同温度下瞬时弹性模量 ,得到沥青混合料的松弛模量G(t) ;由松弛试验中应力随时间变化的数据 ,绘制不同温度下的应力松弛曲线 ,其结果较好地模拟了沥青混合料的粘弹性性质 ;试验结果表明 ,Burgers模型只适合于描述短期松驰的特性 ,不适合于描述长时间下的松弛行为。  相似文献   

2.
为了能够更好地分析沥青混合料的应力、应变变化的规律,通过对不同老化程度的沥青混合料AC-13C进行不同温度、不同应力水平下的应力松弛试验,得到其应力松弛模量随时间变化的关系曲线。并利用分数阶指数模型来表征沥青混合料的应力松弛性能,同时应用非线性回归方法得到各参数与老化时间、应变、温度的关系,确定最终的非线性粘弹性模型。研究结果表明,采用控制应变方式的应力松弛试验可用于评价沥青混合料的的应力松弛能力;沥青混合料的老化程度越高,其低温抗裂性能也就越差;温度越高,应力松弛的越快;初始应变的越小,其应力松弛能力也就越小,即初始应变小的松弛模量曲线相对平缓;利用分阶指数模型能较好地模拟沥青混合料的粘弹性性质,且与试验结果吻合得很好。  相似文献   

3.
通过对沥青混合料AC-13C进行5种不同程度老化,然后再进行-5℃条件下的应力松弛试验,研究老化对其应力松弛性能的影响并建立耦合老化程度因子的松弛模量模型。对比不同老化程度沥青混合料的松弛模量曲线,发现老化程度与松弛时间之间存在一定的等效性;基于材料黏度的自由体积理论,通过假设沥青混合料的自由体积分数与老化程度间呈线性关系,研究并建立了沥青混合料的老化程度-松弛时间等效移位因子;对松弛模量主曲线分别采用Burgers模型和不同单元数目的广义Maxwell模型进行非线性拟合,表明广义Maxwell模型在表征松弛模量变化时优于Burgers模型,且单元数越多,拟合精度越高,考虑到拟合精度和参数数目,推荐采用六单元广义Maxwell模型,并建立耦合老化程度因子的松弛模量模型。  相似文献   

4.
采用等速加载弯曲试验研究了不同沥青混合料的应力松驰性能及破坏特性。结果表明利用等速加载试验并引入松驰模量来分析沥青混合料的应力松驰能力是有效的方法,同时从各外角度对两种沥青混合料的力学性能作出了评价。  相似文献   

5.
沥青混合料的动态模量是路面力学响应分析和结构设计的重要参数之一。为客观表征不同应力状态、试验温度及加载频率等试验条件对沥青混合料动态模量的影响规律,建立复杂服役条件下沥青混合料的动态模量预估模型,揭示沥青混合料动态模量的服役状态相关性。首先开展了不同温度、不同加载速率下沥青混合料的单轴压缩、间接拉伸及直接拉伸强度试验,揭示了不同温度下沥青混合料强度随加载速率的幂函数变化规律,为模量试验应力比的确定提供了依据。进而据此开展了不同温度与不同加载频率下沥青混合料的单轴压缩、间接拉伸及直接拉伸动态模量试验,提出了以等效应力比表征三维应力状态下模量试验应力比的沥青混合料动态模量分析方法,并基于时-温等效原理,采用Sigmoidal函数,建立了基于三维应力状态下等效应力比的动态模量归一化预估模型,实现了不同试验方法下沥青混合料动态模量的统一表征。研究结果表明:不同试验温度与应力状态下沥青混合料的强度均随加载速率的增大而增大,基于等效应力比表征的三维应力状态下模量试验应力比可实现不同试验条件下沥青混合料动态模量的统一表征,避免了路面结构设计时人为选取材料模量设计参数导致的设计结果不确定性。研究可为提...  相似文献   

6.
为了研究沥青混合料动态力学性能的围压应力依赖性,分别对AC-20(AH-30#)和AC-25(AH-30#)两种沥青混合料开展不同试验温度、不同扫描频率和不同围压水平的三轴动态模量试验。首先分析不同温度和频率条件下围压应力对沥青混合料动态力学性能的影响;其次基于时温等效原理分别采用Boltzmann和Gussamp函数模型绘制了基准频率为10 Hz沥青混合料动态模量和相位角主曲线。研究表明:当试验温度低于20℃时,不同扫描频率条件下,围压对两种沥青混合料的动态力学性能几乎没有影响;当温度为55℃,扫描频率为0.1 Hz时,AC-20(AH-30#)和AC-25(AH-30#)沥青混合料的最大动态模量比值分别为3.50和2.49,当试验温度为50℃,扫描频率为0.1 Hz时,最小相位角比则分别为0.59和0.65。高温状态下,围压水平越大,则沥青混合料动态模量比越大,相位角比越小,两种沥青混合料的动态力学性能具有显著的围压应力依赖性。沥青混合料动态模量和主曲线整体变化趋势相同,但在高温区域围压水平升高...  相似文献   

7.
通过模拟沥青路面温度裂缝产生原理,自行研发了沥青混合料低温冻断试验设备,并进行了试验验证.通过应用位移实时补偿系统和耐低温高精度传感器,开发试件对心装置,采用不同的试件安放方式,这些措施使得该设备具有试验精度高、试验结果准确等特点.该设备可以完成沥青混合料温度应力试验、应力松弛试验、直接拉伸试验和收缩系数试验.利用该设...  相似文献   

8.
为了精确、简便地在广泛时间域内获得沥青混合料的松弛模量,提出了一种利用蠕变柔量转换求解松弛模量的新方法。该方法的主要实现过程为:(1)利用沥青混合料单轴压缩蠕变试验的测量结果获取蠕变柔量;(2)根据松弛模量和蠕变柔量在频率域内的关系,即复数模量和复数柔量互为倒数,得到了松弛模量Prony级数表达式中的黏弹性参数;(3)根据确定的黏弹参数确定松弛模量。针对两种沥青混合料在5个不同温度下的单轴压缩蠕变试验测量结果,利用该方法将蠕变柔量转换得到松弛模量,并根据松弛模量和蠕变柔量在时间域内的关系验证了松弛模量求解的准确性,然后根据时温等效原理绘制了两种类型沥青混合料松弛模量的主曲线。计算结果表明:基于单轴压缩蠕变试验的测量数据,可采用提出的新方法准确计算出沥青混合料在不同温度下的松弛模量,控制误差绝对值在1.4%以内;根据在不同温度下计算得到的松弛模量,绘制松弛模量主曲线可表征更广时间和温度范围内的沥青混合料松弛性质,从而更加全面地描述沥青混合料的黏弹性性质,为沥青混合料的黏弹性分析提供了有效的方法。  相似文献   

9.
选取车辙试验、贯入剪切试验来研究SMA-13沥青混合料在不同紫外光辐射强度、紫外光老化循环次数和温度变化下高温性能的改变,以动稳定度、车辙深度和应力强度比这3个指标来表征沥青混合料的高温抗车辙能力和抗剪切性能。研究发现:随着紫外光老化循环次数的增大,沥青混合料的动稳定度及应力强度比逐渐减少,而车辙深度则逐渐增加;沥青混合料的高温性能与紫外光辐射强度、温度呈反比,紫外光辐射越大、温度越高,沥青混合料的高温性能越差;紫外光老化循环次数,比起紫外光防辐射强度及循环温度,对于沥青混合料的动稳定度、车辙深度和应力强度比的影响更为明显;同时建议采用一定强度的紫外光辐射强度(150 W/m2),循环模拟混合料在其照射下高温性能的变化。  相似文献   

10.
为了避免采用分段函数的不方便性和弥补传统S-N疲劳方程分析宽应力比条件下沥青混合料疲劳特性的不足,揭示了应用反曲函数( Sigmoidal Function)描述宽应力水平下沥青混合料疲劳规律的适用性,通过原材料试验及配合比设计,确定了沥青混合料级配和最佳油石比,利用MTS810( Material Test Syst...  相似文献   

11.
沥青混合料疲劳性能的影响因素分析   总被引:4,自引:0,他引:4  
研究荷载间歇时间,加载频率,试验温度,空隙率,沥青针久度,沥青用量6因素对沥青混合料疲劳性能的影响程度。首先,运用正交设计的方法将影响因素适当组合,在MTS810材料试验系统上进行不同条件下的应力控制的疲劳试验;然后,分析各影响因素对沥青混合料疲劳寿命的影响程度;最后,讨论各因素是如何影响沥青混合料的疲劳性能的。研究表明,各因素对沥青混合料疲劳性能影响程度大小顺序为:荷载间歇时间→试验温度→沥青品种→级配类型→沥青用量→加载频率。  相似文献   

12.
针对沥青混合料疲劳耐久性设计参数的不确定性与不科学性问题,从疲劳试验方法及疲劳性能表征模型两方面对沥青混合料疲劳性能表征的发展现状、存在的问题进行了综述,并总结了其未来发展方向。沥青混合料疲劳性能主要通过室内外不同疲劳试验进行研究,不同试验方法所用沥青混合料试件的尺寸、形状,试件内部所处应力状态及试验条件皆各不相同,而沥青混合料是一种由沥青结合料与不同粒径矿料通过搅拌和碾压而成的多相、多组分、多尺度黏弹性混合料,其力学响应具有显著的时间、温度与应力状态相关性,不同试验方法所对应的加载速度、试验温度及应力状态存在较大的差异性,故其试验结果呈现出显著的不确定性,其疲劳性能表征模型参数也存在显著的差异性;此外,常用的室内材料疲劳试验方法大多为一维或二维应力状态下的疲劳试验,这与沥青路面结构实际服役过程中所处的三维应力状态不符;沥青混合料疲劳性能表征方程大多来源于一维应力状态下的疲劳试验结果,因此,用简单应力状态下的材料疲劳试验方法与性能表征模型难以客观表征三维应力状态下沥青路面结构的疲劳抗力,从而导致沥青路面疲劳耐久性设计存在较大的偏差。建议开发与沥青路面服役状态一致的三维应力状态下的疲劳试验方法,并建立三维应力状态下疲劳表征模型,以消除不同试验方法及试验条件对沥青混合料疲劳性能表征的影响,提高沥青混合料疲劳性能表征的有效性与完备性。  相似文献   

13.
本文通过裂缝梁的纯弯曲实验,研究沥青混合料的延迟开裂性能,测得在一定加载速度,不同试验温度条件下沥青混合料的断裂韧性,并观测不同荷载水平和不同温度状况下的裂缝扩展规律。  相似文献   

14.
针对SMA-13沥青混合料在高温地区的永久变形问题,采用旋转压实成型(SGC)试件,使用COOPER公司CRT-NU14材料试验机对试件进行三轴重复荷载蠕变试验,研究温度和偏应力对SMA-13沥青混合料重复荷载下蠕变性能的影响,在蠕变试验数据基础上利用1stopt软件基于修正Burgers模型拟合出SMA-13永久变形预估模型,并采用Origin绘制不同温度下SMA-13沥青混合料的"温度-偏应力-作用次数"三维曲面。  相似文献   

15.
蠕变性能是评价沥青混合料的重要指标之一。利用三分点小梁弯曲试验对沥青混合料的蠕变性能进行研究,探讨加载水平对蠕变曲线的影响。通过对试验蠕变曲线的拟合,获取沥青混合料的粘弹性参数,利用有限元方法对沥青混合料小梁的弯曲蠕变试验进行数值模拟,得出不同温度及不同荷载条件下沥青混合料小梁蠕变规律,并与试验结果进行比较。研究表明,同一温度下,随着应力水平的增大,永久变形会随之增大,且稳定期应变发展速率也会增大;粘弹性数值分析结果与试验结果吻合良好,可以反映沥青混合料蠕变前2个阶段的变形特征。  相似文献   

16.
SBS改性沥青混合料低温性能试验分析与评价   总被引:1,自引:0,他引:1  
通过不同温度、加载速率的小梁弯曲试验和0℃弯曲蠕变试验评价基质沥青和改性沥青混合料的低温性能。结果表明,沥青混合料低温破坏与温度和加载速率有较大的关系。较之基质沥青混合料,改性沥青混合料的弯曲应变能密度提高,脆化点温度降低,应力松弛速度增大,弯曲蠕变速率提高,这些指标对评价混合料的低温性能有重要意义。  相似文献   

17.
李永琴  曲立杰  高学凯  周新星 《公路》2021,66(11):323-327
针对目前沥青低温性能评价指标的不足,从黏弹力学原理出发,对热再生沥青在不同温度及再生剂掺量下进行沥青弯曲蠕变试验,试验采用应力松弛时间、耗散能比及m/S值指标进行分析,结果表明:基于Burgers模型推导出的应力松弛时间、耗散能比、m/S指标均可以反映沥青的低温性能,虽然各指标所采用的黏弹性参数并不一致,但结果相一致.再生剂改变了沥青黏弹比例,使其蠕变行为及抗裂性能发生变化,随着温度降低,热再生沥青松弛时间增加,耗散能比减小,m/S值减小,沥青低温抗裂性变差;随着再生剂掺量的增加,沥青松弛时间减少,耗散能比增加,m/S值增大,沥青的低温抗裂性能显著增强.随着温度降低,再生剂对沥青m/S及耗散能比的影响随其掺量的增加而呈降低趋势,应当根据区域气候特点及经济性选择再生剂掺量.  相似文献   

18.
《中外公路》2021,41(3):280-285
为了研究PR-Module高模量沥青混合料的动态模量变化规律、时温等效下动态模量主曲线和沥青混合料层动态模量沿深度(温度)的分布规律,以SK-70~#作为基质沥青,选用PR-Module作为改性剂制备高模量沥青混合料,通过简单性能试验(SPT试验)测试了PR-Module掺量为0%、0.3%、0.5%和0.7%时沥青混合料的动态模量,并对比分析了PR-Module添加量、温度、加载频率对沥青混合料动态模量的影响;依据时温等效原理,通过非线性最小二乘法拟合得到高模量沥青混合料动态模量的主曲线方程。以抚吉高速公路为例,建立了行驶速度为60、80、100、120 km/h时高模量沥青混合料层动态模量沿深度(温度)的分布曲线。结果表明:不同PR-Module掺量的高模量沥青混合料的动态模量试验结果具有较好的一致性;建立了参考温度为20℃时PR-Module高模量沥青混合料的动态模量主曲线方程。AC-25型高模量沥青混合料在不同温度区间相比普通沥青混合料动态模量的增长率为37%~63%。  相似文献   

19.
环氧沥青混凝土钢桥面铺装层温度应力研究   总被引:7,自引:1,他引:7  
环氧沥青混凝土是采用热固性环氧树脂改性的沥青混凝土,由于其低温松弛模量较大,导致温度收缩应力较大。采用固化后的环氧沥青混凝土小梁,在MTS810材料试验机上进行弯曲蠕变试验,利用数值计算将蠕变柔量转换为松弛模量,运用Boltzmann叠加原理分析环氧沥青混凝土钢桥面铺装层的温度应力。研究表明考虑钢板收缩的温度应力比不考虑钢板收缩的降低许多,且均小于其低温下抗拉强度。  相似文献   

20.
为准确地描述沥青混合料动态模量的温度和荷载依赖性,分别开展了不同条件下4种沥青混合料的两点弯拉和三轴围压动态模量试验.基于时温等效原理,采用Boltzmann函数模型建立了基准频率为10 Hz的沥青混合料弯拉和三轴动态模量主曲线,分析了试验方法对沥青混合料动态模量的影响,构建了不同荷载模式下的基于温度和荷载参数的沥青混...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号