共查询到18条相似文献,搜索用时 46 毫秒
1.
城市交通流具有复杂性、时变性和随机性,实时准确的交通流量预测是实现智能交通诱导及控制的前提.综合分析交通流量影响因素的基础上,进行多路段的交通流量预测研究,提出了基于最小二乘支持向量机的交通流量预测改进模型,并应用平安大街的流量数据进行实例验证.结果表明,该模型具有学习速度快、跟踪性能好及泛化能力强等优点,在交通流预测中更具有实用性和推广性. 相似文献
2.
3.
提出使用最小二乘支持向量机LS—SVM(Least Squares Support Vector Machines)算法进行乐器音乐分类,从而实现乐器的辩识。在对Ls—sVM理论进行深入探讨的基础上,选择乐器音乐clip作为样本,进行特征提取,提取的特征包括频谱特征,短时自相关系数和MFCC等,然后用最小二乘支持向量机算法进行分类。对古琴、古筝、箜篌和琵琶音乐采取样本进行仿真实验,求得分类准确率和运行时间,同时使用逻辑回归(Logistic Regression)算法进行对比试验,其中最小二乘支持向量机和逻辑回归分类的准确率分别为96.5%和92.5%,且LS—SVM的运行时间比Logist的少。实验结果表明最小二乘支持向量机具有更为优越的分类性能和非线性处理能力,可以推广用于解决其它实际分类问题。 相似文献
4.
针对中期电力负荷预测问题,提出了一种基于多维允许小波核的最小二乘小波支持向量机(least squares wavelet support vector machines,LS-WSVM)方法,并且给出了一种可有效求解LS-WSVM的Cholesky分解算法.该方法结合小波技术和最小二乘支持向量机,其中小波核函数具有近似正交以及适用于局部信号分析的特性.将LS-WSVM应用于电力负荷预测的两个实例中,结果表明,与LS-SVM、标准SVM、多层前向神经网络等方法相比,LS-WSVM均能给出相当好的预测性能,所提出的用于中期电力负荷预测的LS-WSVM方法显示了其有效性和应用潜能. 相似文献
5.
考虑上下游公交站点、历史同期客流和相邻间隔输入因子β三者的影响,采用最小二乘支持向量机回归算法建立预测模型,并利用粒子群算法优化模型参数.实例验证结果表明:三者均会对预测精度产生影响;当β=3并在多输入变量中设有上下游站点、历史同期客流维度时,该预测模型相比预测性能最好,平均绝对误差为0.625 0,均方误差为0.914 5. 相似文献
6.
公交客流是公交规划和运营调度的基础。针对短期公交客流的非线性、随机性和复杂性及支持向量机单核核函数自适应能力较弱的特点,提出一种基于多核最小二乘支持向量机的公交客流预测方法。该方法既考虑到了公交客流的历史数据规律,又顾及到短期公交客流的时变特性,充分利用了相关参数的知识信息。为了保证模型的自适应能力和提高模型的泛化能力,作者提出了综合评价指标,并采用改进遗传算法实现向量机参数优化。最后,结合LS.SVM工具箱,在MATLAB平台上实现长春市短期公交客流的预测。预测结果表明,提出的多核预测方法具有较高的准确性、较强的鲁棒性和自适应能力,在公交客流预测中有具有较好的应用价值。 相似文献
7.
为了提高桥梁与桥区通航船舶的安全性, 提出了一种船撞桥概率智能预测方法。以桥墩跨径、水流速度、水流方向与桥墩连线法线方向夹角以及航道弯曲度为系统输入, 以单航次船撞桥事故率为系统输出, 应用最小二乘支持向量机进行了船撞桥概率估算。结合实际航道, 选择了长江和黑龙江上12座桥梁的洪水期、中水期和枯水期3个时段的样本数据进行验算, 并与神经网络船撞桥概率估算结果进行对比。对比结果表明: 支持向量机方法能准确地预报船撞桥概率, 具有全局最优解, 并且收敛性和学习效率均优于神经网络。 相似文献
8.
为真实地反应车辆跟驰机理,假设在跟驰状态下,驾驶员倾向于保持最优跟驰间距,在分析最优间距函数的基础上,建立了车辆跟驰模型(optimal distance model, ODM).利用NGSIM数据,对ODM模型和经典Gipps车辆跟驰模型进行参数标定和评价.用仿真方法分析了ODM模型再现宏观交通流现象的能力和加速度特性.研究结果表明:与Gipps模型相比, ODM模型的加速度、速度和距离的仿真精度分别提高了0.36 m/s2、0.99 m/s和0.73 m,并能够再现实际交通流中稳定车流和冲击波等交通现象;在稳定交通流中, ODM模型总是趋向于使车辆间距等于最优跟驰间距,或在其附近小幅度波动. 相似文献
9.
针对目前交通量预测中所广泛采用的基于经验风险最小化的BP网络易于陷入局部最优解等缺点,介绍了一种新的预测方法——基于结构风险最小化的SVMR交通量预测模型,经实践证明能够较好地解决道路交通量预测问题。 相似文献
10.
为改善网联自主车辆(CAV)的跟车安全和效率,针对CAV通过对周围环境进行感知进而进行自主决策的特点,首先,建立包含车道线势场、道路边界势场和车辆势场的安全势场模型,系统地刻画CAV在行驶过程中面临的安全风险,在安全势场模型的建立过程中,针对现有车辆势场函数存在引力和斥力表达式分割独立的缺陷,借鉴分子间相互作用关系建立统一的基于LennardJones势的车辆相互作用势场函数,并将加速度参数引入到车辆势场中,加速度的变化直接影响车辆势场的分布,能够有效地反映车辆在不同运行状态下安全势场的动态变化趋势;然后,将安全势场应用于CAV跟驰行为决策,并通过上海自然驾驶数据集标定模型参数;最后,选择与现有经典的智能驾驶人IDM和可变车头时距VTH模型进行仿真对比。结果表明:与其他两种模型相比,该模型在所设计的3种交通场景中有更平滑的响应曲线来改善跟车安全和效率,验证了模型的有效性。研究成果可为CAV的上层控制设计提供理论支撑,也为CAV安全技术的研究提供了
独特的途径。 相似文献
11.
为了提高铁路货运量的预测精度及建模速度,将灰色预测模型(GM(1,1))、最小二乘支持向量机(LSSVM)和自适应粒子群优化(APSO)算法相融合,建立了灰色自适应粒子群最小二乘支持向量机(GM-APSO-LSSVM)预测模型.通过灰色预测模型中的灰色序列算子,弱化原始数列随机性,挖掘数列中蕴含的规律,利用最小二乘支持向量机计算简便、求解速度快、非线性映射能力强的特点进行预测,并采用自适应粒子群算法优化选择LSSVM参数.对我国铁路货运量的实例分析表明:用该模型得到的评价指标RMSE、MAE、MPE和Theil不等系数分别为0.062 8、0.052 3、0.016 2和0.010 7,均小于其它模型,预测性能好;用APSO算法搜索LSSVM最优参数的时间为55.656 s,比传统交叉验证法减少了10.462 s;2006~2009年的预测相对误差分别为0.39%、-1.67%、1.44%和4.75%,适用于铁路货运量的短期预测. 相似文献
12.
Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines.Firstly,the deviation data of engine cruise are analyzed.Then,model selection is conducted using pattern search method.Finally,by decoding aircraft communication addressing and reporting system (ACARS) report,a real-time cruise data set is acquired,and the diagnosis model is adopted to process data.In contrast to the radial basis function (RBF) neutral network,LS-SVM is more suitable for real-time diagnosis of gas turbine engine. 相似文献
13.
从车辆行驶轨迹的角度,车辆驾驶行为可细分为车辆跟驰行为、车辆换道准备行为和车辆换道执行行为,它们对交通拥堵、交通事故等都有着重要影响,也是自动驾驶、交通仿真等系统的基础构成模块.然而,如何从实际微观交通流数据中对3种行为进行识别是驾驶行为研究的基础和难点.本文提出基于支持向量机的驾驶行为识别方法,使用真实车辆轨迹数据,为提高模型的准确率,首先对样本数据进行归一化和主成分分析预处理,然后采用网格搜索算法对惩罚因子和核参数进行寻优,最后利用样本数据对基于支持向量机的分类模型进行训练和测试.结果表明,模型的测试精度达到了98.41%,能够很好地识别车辆的行驶状态,为驾驶行为各阶段的研究提供支持. 相似文献
14.
在介绍智能交通系统的特点和相关技术的基础上,SVR算法被用来处理短时交通量预测问题。实验证明,支持向量机在交通系统中的应用具有可行性、有效性和广阔的前景。 相似文献
15.
在介绍智能交通系统的特点和相关技术的基础上,SVR算法被用来处理短时交通量预测问题.实验证明,支持向量机在交通系统中的应用具有可行性、有效性和广阔的前景. 相似文献
16.
基于支持向量机理论对出行链活动类型的识别方法进行了研究. 首先对居民出行的时间序列位置信息做数据预处理,提取出行链的出行过程和活动地点信息,并结合地理信息系统(GIS)提取活动的备选类型;然后从出行链和活动的时间和空间因素提取活动类型识别的特征,形成特征向量作为分类器的输入,并建立基于支持向量机的两两分类器,采用分类器投票的方法从备选集中选择活动的类型;最后利用模拟数据和交叉验证的方法对两两分类器进行训练检验,分别从高斯径向机核函数和多层感知器核函数的角度分析活动类型识别率. 结果表明:在两两分类中,高斯径向机核函数的最高识别率为99%,最低识别率为62%;多层感知器核函数的最高识别率为97%,最低识别率为54%. 相似文献
17.
关静 《大连交通大学学报》2013,34(3):41-43
依据灰色预测和支持向量机的特点,提出了一种将两种预测方法相结合的灰色支持向量机,并结合民航旅客吞吐量的预测结果,对比了灰色预测模型、支持向量机以及灰色支持向量机的预测结果,验证了灰色支持向量机的预测精度高,预测结果更为准确可靠,为提高民航旅客吞吐量预测精度提供了新的途径. 相似文献
18.
根据相空间延迟坐标重构理论,基于支持向量机强大的非线性映射能力和小波核函数的局部分析和特征提取能力,提出了一种基于小波支持向量机的电力系统短期负荷预测方法,并利用该方法对嵌入维数与预测性能的关系进行了探讨。仿真结果表明,该预测方法能精确地预测电力负荷,而且在电力负荷序列的最佳嵌入维数未知时也能取得比较好的预测效果,这一结论预示着小波支持向量机是一种预测电力系统短期负荷的有效方法。 相似文献