首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统汽车照明系统只能用手动控制,在路况复杂或者环境恶劣的情况下不能及时有效地提供良好照明的问题,文章介绍了一种自适应车灯前照明控制系统(AFS)并对其控制方法进行了研究。运用模糊控制理论并使用MATLAB/SIMUuNK软件中的FUZZY模块,对水平和垂直方向上的车灯偏转设计了模糊控制器。指出AFS应用前景广阔,模糊控制技术可以为将来智能车灯的发展提供参考。  相似文献   

2.
从AFS的性能特点入手,通过核心芯片的选用、控制系统的构建,概要介绍新型的汽车前照灯照明系统设计的要点。重点阐述汽车前照灯照明系统架构技术方案的确定,介绍具有自适应功能的智能照明控制系统结构图及程序流程图,对应硬件、软件编程等对实施系统控制的影响。阐述降低响应时间和转角误差、提高精度、可靠性和稳定性等的目标值和要点,以...  相似文献   

3.
王华 《上海汽车》2014,(9):47-52
自适应前照明系统(AFS)是一种通过光型改变来改善道路交通的智能灯具,其作为当今世界最先进的汽车照明系统,能够有效地降低驾驶者在夜晚行车的疲劳程度,从而明显提升夜晚行车的安全性。文章以高速路段驾驶状态为基准,比较了普通近光光型和高速近光光型,对其道路照明进行最小可见度性能分析,并得出装用AFS车辆夜间道路照明最小可见度的研究结论。  相似文献   

4.
There are basically two methods to control yaw moment which is the most efficient way to improve vehicle stability and handling. The first method is indirect yaw moment control, which works based on control of the lateral tire force through steering angle control. It is mainly known as active steering control (ASC). Nowadays, the most practical approach to steering control is active front steering (AFS). The other method is direct yaw moment control (DYC), in which an unequal distribution of longitudinal tire forces (mainly braking forces) produces a compensating external yaw moment. It is well known that the AFS performance is limited in the non-linear vehicle handling region. On the other hand, in spite of a good performance of DYC in both the linear and non-linear vehicle handling regions, continued DYC activation could lead to uncomfortable driving conditions and an increase in the stopping distance in the case of emergency braking. It is recommended that DYC be used only in high-g critical maneuvers. In this paper, an integrated fuzzy/optimal AFS/DYC controller has been designed. The control system includes five individual optimal LQR control strategies; each one, has been designed for a specific driving condition. The strategies can cover low, medium, and high lateral acceleration maneuvers on high-μ or low-μ roads. A fuzzy blending logic also has been utilized to mange each LQR control strategy contribution level in the final control action. The simulation results show the advantages of the proposed control system over the individual AFS or DYC controllers.  相似文献   

5.
This paper proposes a new Lane Keeping Assist (LKA) system based on the integrated control strategy with AFS and BTV. To be specific, the steering controller calculates the gear ratio of AFS to align with the target lane whereas the braking controller determines differential brake pressure using Sliding Mode Control (SMC) theory according to the state-varying sliding surface with Fuzzy model. In recent years, auto industries have produced the lane keeping applications to prevent lane departure caused by drivers’ distractions or drowsiness. To also prevent wrist injury in drivers while steering, current LKA systems limit the output values of steering-wheel assist torque. This limiting mechanism, however, can cause a problem that cannot follow a road curvature when an older driver overexerts an inappropriate control effort. A new LKA system of the AFS and BTV integrated controller has since been drafted to solve this problem, and validated its performance in regards to the test conditions given with various driver models.  相似文献   

6.
The performance of most electronic chassis control systems in the past has been optimized individually. Recently, a great research effort has been dedicated to the integration of chassis control systems in an effort to improve the vehicle performance. This involves orchestration of individual control modules so that they can jointly contribute to the enhancement of their control effect. In this research, two integrated control logics for AFS (Active Front Steering) and ESP (Electronic Stability Program) have been developed. Of the two logics, one uses a supervisor that rules over the individual modules. The other logic uses a CL (Characteristic Locus) method, which is a frequency-domain multivariable control technique. The two logics have been tested under various driving conditions to investigate their control effects. The results indicate that the proposed integrated control logics can yield vehicle performance that is superior to that of the individual control modules without any integration scheme.  相似文献   

7.
This paper presents a coordinated control of electronic stability control (ESC) and active front steering (AFS) with adaptive algorithms for yaw moment distribution in integrated chassis control (ICC). In order to distribute a control yaw moment into control tire forcres of ESC and AFS, and to coordinate the relative usage of ESC to AFS, a LMS/Newton algorithm (LMSN) is adopted. To make the control tire forces zero in applying LMS and LMSN, the zero-attracting mechanism is adopted. Simulations on vehicle simulation software, CarSim®, show that the proposed algorithm is effective for yaw moment distribution in integrated chassis control.  相似文献   

8.
机械式前轮主动转向系统的原理与应用   总被引:8,自引:2,他引:6  
高晓杰  余卓平  张立军  蒋励 《汽车工程》2006,28(10):918-921,932
以宝马轿车上选装的主动转向系统为例,详细介绍了该系统的组成、双行星齿轮机构的结构及工作模式,以及该系统可变传动比、稳定车辆等功能的实现原理和系统安全性设计。指出通过与其他动力学控制系统一起实现底盘一体化集成控制将是主动转向技术未来的发展方向。  相似文献   

9.
汽车内饰氛围灯已成为消费者购买汽车的重要因素之一,氛围灯的互动方式和控制逻辑朝着智能化和个性化方向发展,氛围灯的点亮效果被大多数的主机厂所关注和重视。本文通过对一种杯托氛围灯发光效果改进方法的总结,讲述如何提升氛围灯发光均匀性和点亮效果,让广大消费者接受并感到惊喜,提升汽车内饰氛围灯的用户体验,彰显品牌设计理念。  相似文献   

10.
SUMMARY

This paper attempts to clarify the question of what the optimal semi-active suspension is that minimizes a deterministic quadratic performance index. The optimal control law is a time-varying solution that involves three related Riccati equations. The constant Riccati solution (the so-called “clipped optimal” solution) is not optimal, although its performance is generally quite close to that of the time-varying solution. As the time-varying solution cannot be practically implemented, several constant gain sub-optimal solutions are investigated. A new semi-active algorithm, called the “steepest gradient” algorithm, is developed and its performance is shown to be superior to that of the “clipped optimal” solution.  相似文献   

11.
:随着城市的发展和人民文化生活水平的提高 ,“城市亮化”工程越来越受大城市的重视。本文介绍了贵阳市人民广场工程的灯光景观设计的主导思想及其具体内容  相似文献   

12.
An integrated vehicle dynamics control (IVDC) algorithm, developed for improving vehicle handling and stability under critical lateral motions, is discussed in this paper. The IVDC system utilises integral and nonsingular fast terminal sliding mode (NFTSM) control strategies and coordinates active front steering (AFS) and direct yaw moment control (DYC) systems. When the vehicle is in the normal driving situation, the AFS system provides handling enhancement. If the vehicle reaches its handling limit, both AFS and DYC are then integrated to ensure the vehicle stability. The major contribution of this paper is in improving the transient response of the vehicle yaw rate and sideslip angle tracking controllers by implementing advanced types of sliding mode strategies, namely integral terminal sliding mode and NFTSM, in the IVDC system. Simulation results demonstrate that the developed control algorithm for the IVDC system not only has strong robustness against uncertainties but also improves the transient response of the control system.  相似文献   

13.
The automotive steering system is the primary channel through which road and vehicle behavior feedback is transmitted to the driver. While the driver provides directional platform control through the steering wheel, perceptions of the vehicle’s handling responsiveness are simultaneously transmitted back to the driver allowing for correction of any instabilities the vehicle may encounter. Based on these factors, drivers often pay special attention to the steering system when deciding what vehicle to purchase. Therefore, a significant amount of effort and time is invested in attempting to determine the optimal design of steering system components and configurations. In this study, the determination of an optimal steering configuration was attempted based on responses obtained from questionnaires that subjects answered. The questions were designed to evaluate the degree of satisfaction regarding the “control”, “ease of operation”, and “fun” participants experienced after each driving run. During the study, human subjects drove a driving simulator for 15 combinations of 3 different roadway environments and 5 different steering configurations, filling out a questionnaire after each scenario. The subjects were also classified as a type of driver (“utility”, “enthusiast”, and/or “performance”). The study attempted to determine if the mean values of questionnaire responses for “control”, “ease”, and “fun” type of questions changed as the scenario and/or driver type changed. Analysis of Variance (ANOVA) was used to determine if the mean values of the three types of questions were statistically different. The overall results suggest that the average responses for vehicle “control”, “ease”, and the “fun” type of questions were dependent on the type of roadway environment; however, only the responses for “fun” type of questions were influenced by the given steering configurations. Indeed, the steering system can impact the driver’s perceptions of the vehicle’s operational experience.  相似文献   

14.
This paper describes an optimum distribution method for yaw moment for use with unified chassis control (UCC) with limitations on the active front steering (AFS) angle. Although the UCC has been assumed to have no AFS angle limitation in the literature, a physical limitation exists in real applications. To improve upon the previous method, a new optimum distribution method for yaw moment is proposed that takes this limitation into account. This method derives an optimum longitudinal/lateral force using the Karush-Kuhn-Tucker (KKT) optimality condition, and a simulation is performed to validate the proposed method. The simulation results indicate that the limitation on the AFS angle increases longitudinal braking force and, therefore, reduces the vehicle speed and the side-slip angle.  相似文献   

15.
《JSAE Review》2002,23(4):459-464
In anticipation of the increased needs to further reduce exhaust gas emissions and improve fuel consumption, a new brake-by-wire system called an “electronically controlled brake” system (hereafter referred to as “ECB”) has been developed. With this brake system, which is able to smoothly control the hydraulic pressure that is applied to each of the four wheel cylinders on an individual basis, functional enhancements can be added by appropriately modifying its software. This paper discusses the necessity of the ECB, the system configuration and the results of its application on hybrid vehicles.  相似文献   

16.
In the past decade, several publications have shown that it is advisable to design an advanced driver assistance system using a shared control structure. This paper is concerned with the modelling and verification of an interactive steering control strategy between a driver and an active front steering (AFS) controller to investigate the complex interactions between human driver and an AFS system. Using game theory as a general framework, a more comprehensive mathematical model system of interactive steering control potentially applicable to explore human drivers’ behaviours in shared control of intelligent vehicles is presented and discussed in this paper. The effects of different information patterns, namely the open-loop pattern and the closed-loop feedback pattern on modelling shared steering control between driver and AFS have been investigated. Simulation and hardware-in-loop implementation results prove the validity of steering interactive modelling in different game information patterns. Specifically, the results show that, in the Nash equilibrium strategy situation, the driver and the AFS controller may become more rational and reasonable in the process of completing the same dynamic task in the closed-loop feedback information patterns compared to the open-loop ones; and the differences between feedback Nash and feedback Stackelberg may depend on the step size of discretisation.  相似文献   

17.
The performance of a steering system equipped with active front steering (AFS) device is investigated with the consideration of AFS intervention and a proposed dynamic model. Firstly, the kinematics and dynamics of AFS are illustrated based on the mechanism of AFS with planetary gear set and a detailed dynamic model. Furthermore, a basic control on the voltage of DC motor at AFS actuator is proposed. It is realized by a proportional controller that the input is the difference of desired steering ratio and a conventional gear ratio. Finally, two numerical simulations are carried out. One is on-center handling test to demonstrate the basic characteristics of AFS. The other simulation is to demonstrate the effects of vehicle speed, frequency of steering input and AFS intervention on steering system performance. It is shown that the proposed AFS dynamic model is capable to simulate dynamic performance of AFS. The effect of AFS intervention on turning efforts at hand steering wheel is inevitable and the turning comfort is deteriorated to some extent.  相似文献   

18.
In this paper, an advanced control technique that can be implemented in hard emergency situations of vehicles is introduced. This technique suggests integration between Active Front Steering (AFS) and Active Roll Moment Control (ARMC) systems in order to enhance the vehicle controllability. For this purpose, the AFS system applies a robust sliding mode controller (SMC) that is designed to influence the steering input of the driver by adding a correction steering angle for maintaining the vehicle yaw rate under control all the time. The AFS system is then called active-correction steering control. The ARMC system is designed to differentiate the front and rear axles' vertical suspension forces in order to alter the vehicle yaw rate and to eliminate the vehicle roll motion as well. Moreover, the operation of the SMC is based on tracking the behavior of a nonlinear 2-wheel model of 2-DOF used as a reference model. The 2-wheel model incorporates real tire characteristics, which can be inferred by the use of trained neural networks. The results clearly demonstrate the enhanced characteristics of the proposed control technique. The SMC with the assistance of the ARMC provides less correction of the steering angle and accordingly reduces the possibility of occurrence of the saturation phenomenon that is likely to take place in the operation of the SMC systems.  相似文献   

19.
This paper presents a method to select the actuator combination in integrated chassis control using Taguchi method. Electronic stability control (ESC), active front and rear steering (AFS/ARS) are used as an actuator, which is needed to generate a control tire force. After computing the control yaw moment in the upper-level controller, it is distributed into the control tire forces, generated by ESC, AFS and ARS in the lower-level controller. In this paper, the weighted pseudo-inverse control allocation (WPCA) with variable weights is used to determine the control tire forces of each actuator. Taguchi method is adopted for sensitivity analysis on variable weights of WPCA in terms of the control performances such as the maneuverability and the lateral stability. For sensitivity analysis, simulation is performed on a vehicle simulation package, CarSim. From sensitivity analysis, the most effective actuator combination is selected.  相似文献   

20.
In this paper, an advanced control technique that can be implemented in hard emergency situations of vehicles is introduced. This technique suggests integration between Active Front Steering (AFS) and Active Roll Moment Control (ARMC) systems in order to enhance the vehicle controllability. For this purpose, the AFS system applies a robust sliding mode controller (SMC) that is designed to influence the steering input of the driver by adding a correction steering angle for maintaining the vehicle yaw rate under control all the time. The AFS system is then called active-correction steering control. The ARMC system is designed to differentiate the front and rear axles' vertical suspension forces in order to alter the vehicle yaw rate and to eliminate the vehicle roll motion as well. Moreover, the operation of the SMC is based on tracking the behavior of a nonlinear 2-wheel model of 2-DOF used as a reference model. The 2-wheel model incorporates real tire characteristics, which can be inferred by the use of trained neural networks. The results clearly demonstrate the enhanced characteristics of the proposed control technique. The SMC with the assistance of the ARMC provides less correction of the steering angle and accordingly reduces the possibility of occurrence of the saturation phenomenon that is likely to take place in the operation of the SMC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号