首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

2.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

3.
For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   

4.
Independently rotating wheels in railway vehicles could represent an alternative to standard technology as a solution to dynamic problems such as hunting instability or steering forces in curves. Among the proposed design solutions, the train with independently rotating wheels and with the most practical applications is that developed by Talgo. The Talgo technology is based on the use of a passive steering technique of the wheelset through a mechanism. The absence of automatic control systems means that a careful selection of the mechanical parameters of the vehicle is required to improve its dynamic characteristics. Aspects such as dynamic stability or the effect of vibration on passenger comfort could be analysed by extracting the modal properties of the train from mathematical models. In this article, a methodology for determining the low-frequency modal properties of articulated trains equipped with independently rotating wheels and passive steering system (Talgo-type) is proposed. The singularity of this application based on the use of non-conventional wheelsets necessarily involves the development of a specific methodology.  相似文献   

5.
SUMMARY

For railway vehicles having coned wheels mounted on solid axles there is a conflict between dynamic stability and steering ability

It is shown that the stiffness and kinematic properties of all possible interwheelset connections are characterised by two properties describing the distortional characteristics of the vehicle in plan. Within this framework, the various possibilities for steered wheelsets are considered, and several past and current proposals are reviewed. Using the linear approach to dynamic stabibty and curve negotation the performance of existing and newly proposed configurations is discussed

For any symmetric, two-axle vehicle it is shown that for perfect steering on a curve there should be zero bending stiffness between the wheelsets. It is further shown that if the bending stiffness is zero, the vehicle lacks dynamic stability as the critical speed of instability, is zero. In this case, the vehicle undergoes a steering oscillation which occurs at the kinematic frequency of a single wheelset and which is a motion in which pure rolling occurs

Similar results are obtained with vehicles with three or more axles if adjacent axles are connected by shear structures. However, it is shown that it is possible to satisfy both the requirements of perfect steering and a non-zero critical speed if the vehicle has zero bending stiffness and if, in addition to adjacent wheelsets being connected in shear, at least one pair of non-adjacent axles are connected by a shear structure.  相似文献   

6.
Independently rotating wheels in railway vehicles could represent an alternative to standard technology as a solution to dynamic problems such as hunting instability or steering forces in curves. Among the proposed design solutions, the train with independently rotating wheels and with the most practical applications is that developed by Talgo. The Talgo technology is based on the use of a passive steering technique of the wheelset through a mechanism. The absence of automatic control systems means that a careful selection of the mechanical parameters of the vehicle is required to improve its dynamic characteristics. Aspects such as dynamic stability or the effect of vibration on passenger comfort could be analysed by extracting the modal properties of the train from mathematical models. In this article, a methodology for determining the low-frequency modal properties of articulated trains equipped with independently rotating wheels and passive steering system (Talgo-type) is proposed. The singularity of this application based on the use of non-conventional wheelsets necessarily involves the development of a specific methodology.  相似文献   

7.
ABSTRACT

In this paper, we describe how vehicle systems and the vehicle motion control are affected by automated driving on public roads. We describe the redundancy needed for a road vehicle to meet certain safety goals. The concept of system safety as well as system solutions to fault tolerant actuation of steering and braking and the associated fault tolerant power supply is described. Notably restriction of the operational domain in case of reduced capability of the driving automation system is discussed. Further we consider path tracking, state estimation of vehicle motion control required for automated driving as well as an example of a minimum risk manoeuver and redundant steering by means of differential braking. The steering by differential braking could offer heterogeneous or dissimilar redundancy that complements the redundancy of described fault tolerant steering systems for driving automation equipped vehicles. Finally, the important topic of verification of driving automation systems is addressed.  相似文献   

8.
9.
A robust yaw stability control design based on active front steering control is proposed for in-wheel-motored electric vehicles with a Steer-by-Wire (SbW) system. The proposed control system consists of an inner-loop controller (referred to in this paper as the steering angle-disturbance observer (SA-DOB), which rejects an input steering disturbance by feeding a compensation steering angle) and an outer-loop tracking controller (i.e., a PI-type tracking controller) to achieve control performance and stability. Because the model uncertainties, which include unmodeled high frequency dynamics and parameter variations, occur in a wide range of driving situations, a robust control design method is applied to the control system to simultaneously guarantee robust stability and robust performance of the control system. The proposed control algorithm was implemented in a CaSim model, which was designed to describe actual in-wheel-motored electric vehicles. The control performances of the proposed yaw stability control system are verified through computer simulations and experimental results using an experimental electric vehicle.  相似文献   

10.
An important development of the steering systems in general is active steering systems like active front steering and steer-by-wire systems. In this paper the current functional possibilities in application of active steering systems are explored. A new approach and additional functionalities are presented that can be implemented to the active steering systems without additional hardware such as new sensors and electronic control units. Commercial active steering systems are controlling the steering angle depending on the driving situation only. This paper introduce methods for enhancing active steering system functionalities depending not only on the driving situation but also vehicle parameters like vehicle mass, tyre and road condition. In this regard, adaptation of the steering ratio as a function of above mentioned vehicle parameters is presented with examples. With some selected vehicle parameter changes, the reduction of the undesired influences on vehicle dynamics of these parameter changes has been demonstrated theoretically with simulations and with real-time driving measurements.  相似文献   

11.
One way of addressing traffic congestion is by efficiently utilizing the existing highway infrastructure. Narrow tilting vehicles that need a reduced width lane can be part of the solution if they can be designed to be safe, stable, and easy to operate. In this paper, a control system that stabilizes the tilt mode of such a vehicle without affecting the handling of the vehicle is proposed. This control system is a combination of two different types of control schemes known as steering tilt control (STC) and direct tilt control (DTC) systems. First, different existing variations of both STC and DTC systems are considered and their shortcomings analysed. Modified control schemes are then suggested to overcome the deficiencies. Then a new method of integrating these two control schemes that guarantees smooth switchover between the controllers as a function of vehicle velocity is proposed. The performance of the proposed STC, DTC, and integrated systems is evaluated by carrying out simulations for different operating conditions and some experimental work. The design of a second-generation narrow tilting vehicle on which the developed control system has been implemented is presented.  相似文献   

12.
One way of addressing traffic congestion is by efficiently utilizing the existing highway infrastructure. Narrow tilting vehicles that need a reduced width lane can be part of the solution if they can be designed to be safe, stable, and easy to operate. In this paper, a control system that stabilizes the tilt mode of such a vehicle without affecting the handling of the vehicle is proposed. This control system is a combination of two different types of control schemes known as steering tilt control (STC) and direct tilt control (DTC) systems. First, different existing variations of both STC and DTC systems are considered and their shortcomings analysed. Modified control schemes are then suggested to overcome the deficiencies. Then a new method of integrating these two control schemes that guarantees smooth switchover between the controllers as a function of vehicle velocity is proposed. The performance of the proposed STC, DTC, and integrated systems is evaluated by carrying out simulations for different operating conditions and some experimental work. The design of a second-generation narrow tilting vehicle on which the developed control system has been implemented is presented.  相似文献   

13.
For railway vehicles having coned wheels mounted on solid axles there is, in general, a conflict between stability of lateral deviations from the motion along the track and ability to steer round curves. However, the three-axle vehicle with zero bending stiffness and with shear elasticity between all wheelsets can satisfy the requirement of perfect steering and for a range of values of equivalent conicity possesses both static and dynamic stability. The static and dynamic stability of the most general form of symmetric three-axle vehicle is investigated, and stability criteria derived.  相似文献   

14.
Summary This paper presents an emergency obstacle avoidance control strategy that may be used in automated highway vehicles. In the proposed control strategy, an inverse vehicle dynamics problem is solved on the selected emergency lane-change path to find out the nominal feedforward control inputs such as the steering wheel angle and the braking force. Then the overall vehicle lateral and yaw motion is controlled additionally in the feedback path by an active yaw moment for stability augmentation as well as a corrective steering angle that is added to the nominal steering angle in order to compensate for uncertainties involved in the nominal control input computation. The proposed control strategy has been tested by an ABS Hardware-In-the-Loop Simulation (HILS) system for rapid and safe control prototyping in a lab. Simulation results with a sample emergency avoidance distance (45 m) show that the proposed control strategy may be used as a feasible obstacle avoidance strategy for automated highway vehicles.  相似文献   

15.
Summary This paper presents an emergency obstacle avoidance control strategy that may be used in automated highway vehicles. In the proposed control strategy, an inverse vehicle dynamics problem is solved on the selected emergency lane-change path to find out the nominal feedforward control inputs such as the steering wheel angle and the braking force. Then the overall vehicle lateral and yaw motion is controlled additionally in the feedback path by an active yaw moment for stability augmentation as well as a corrective steering angle that is added to the nominal steering angle in order to compensate for uncertainties involved in the nominal control input computation. The proposed control strategy has been tested by an ABS Hardware-In-the-Loop Simulation (HILS) system for rapid and safe control prototyping in a lab. Simulation results with a sample emergency avoidance distance (45 m) show that the proposed control strategy may be used as a feasible obstacle avoidance strategy for automated highway vehicles.  相似文献   

16.
Train-tram railway vehicles implement the connection between urban tramlines and the surrounding railway network. Train-tram railway vehicles, which use existing infrastructure, can help to avoid large investments in new railways or tramlines and make interchanges between city center and surrounding cities unnecessary. However, present train-tram rail vehicle cannot carry out the integration of operating by means of high speed in intercity railways with operating on small radius of curvature in inner city tramlines. This paper aims to develop a new model for solid wheelsets train-tram railway vehicles, which will not only pass the curve of 25mR radius of curvature traveling on inner city tramlines with the speed of 18 km/h, but also can travel on straight railway with 200 km/h high speed between intercity. In this paper, a new train-tram model, including five car-body and five motor bogies with ten traction motors, is addressed. Expect as a real rail vehicle testing, this study prefer virtual simulation, which is an effective way to show the rail vehicle performance, such as ride stability, ride comfort and ride safety, by means of evaluating the dynamic characteristics of rail vehicle. Moreover, Design of Experiment (DOE) method is used to optimize solid wheelsets bogie system on improving passenger comfort, safety and stability of train-tram. Parameters of components of bogie system are tuned to minimize the derailment coefficient and the ride comfort index. The results shows that the best comfort index for passenger and minimum derailment coefficient are found. The results also show that this optimized new train-tram model is reliable and practical enough to be applied on real rail vehicle design.  相似文献   

17.
The design of the integrated active front steering and active differential control for handling improvement of road vehicles is undertaken. The controller design algorithm is based on the solution of a set of linear matrix inequalities that guarantee robustness against a number of vehicle parameters such as speed, cornering and braking stiffnesses. Vehicle plane dynamics are first expressed in the generic linear parameter-varying form, where the above-stated parameters are treated as interval uncertainties. Then, static-state feedback controllers ensuring robust performance against changing road conditions are designed. In a first series of simulations, the performance of the integrated controller is evaluated for a fishhook manoeuvre for different values of road adhesion coefficient. Then, the controller is tested for an emergency braking manoeuvre executed on a split-μ road. In all cases, it is shown that static-state feedback controllers designed by the proposed method can achieve remarkable road handling performance compared with uncontrolled vehicles.  相似文献   

18.
For railway vehicles having coned wheels mounted on solid axles, there is a conflict between the stability of lateral deviations from the motion along the track and the ability to steer round curves. A general theory is developed for the two-axle vehicle in which there is a lack of symmetry, fore-and-aft, both of the interwheelset structure and of the equivalent conicities of the wheelsets. It is shown that whilst parameters can be selected which provide static and dynamic stability and perfect steering for both directions of motion, there is a lightly damped mode of oscillation for any practical configuration and the significance of this is discussed.  相似文献   

19.
In this paper, the semi-active suspension system for railway vehicles based on the controlled (MR) fluid dampers is investigated, and compared with the passive on and passive off suspension systems. The lateral, yaw, and roll accelerations of the car body, trucks, and wheelsets of a full-scale railway vehicle integrated with four MR dampers in the secondary suspension systems, which are in the closed and open loops respectively, are simulated under the random and periodical track irregularities using the established governing equations of the railway vehicle and the modelled track irregularities in Part I of this paper. The simulation results indicate that (1) the semi-active controlled MR damper-based suspension system for railway vehicles is effective and beneficial as compared with the passive on and passive off modes, and (2) while the car body accelerations of the railway vehicle integrated with semi-active controlled MR dampers can be significantly reduced relative to the passive on and passive off ones, the accelerations of the trucks and wheelsets could be increased to some extent. However, the increase in the accelerations of the trucks and wheelsets is insignificant.  相似文献   

20.
A forced steering rail vehicle employs linkages between.the carbody and wheelsets to force a more radial wheelset alignment. It is shown that the curve negotiation capability of forced steering trucks is significantly improved over conventional and self steering radial trucks. Parametric curves are presented showing angle-of-attack and lateral flange force as a function of steering gain parameters and truck bending stiffness. It is also shown that the forced steering concept can produce kinematic instability and severely reduced critical speeds for low conicities and creep coefficients. Analytic expressions are derived that illustrate how these kinematic instabilities can be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号