首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 46 毫秒
1.
常规公交是城市公共交通的主体,基于出行特征对公交乘客进行群体划分是实现常规公交精细化管理的基础。本文基于厦门常规公交IC卡刷卡数据,采用改进BIRCH层次聚类算法的二阶聚类算法,将公交乘客按照出行频率和稳定性划分为不同的常规公交出行模式,并对不同出行模式进行分析。研究方法可为常规公交乘客出行特征聚类分析提供新的算法思路,有助于针对不同出行群体制定有针对性的政策措施。  相似文献   

2.
本文为了完善乘客的公交出行链,设计了一种基于一卡通数据的公交换乘行为分析方法。文章首先分析公交换乘行为的时间和空间影响因素,然后设计以公交出行记录为基础的公交换乘行为识别流程,通过实例推断出研究时间段内所有对象的公交换乘行为,最后以公交换乘系数为依据判断城市公交直达性的优劣。  相似文献   

3.
Understanding the dynamics of boarding/alighting activities and its impact on bus dwell times is crucial to improving bus service levels. However, research is limited as conventional data collection methods are both time and labour intensive. In this paper, we present the first use of smart card data to study passenger boarding/alighting behaviour and its impact on bus dwell time. Given the nature of these data, we focus on passenger activity time and do not account for the time necessary to open and close doors. We study single decker, double decker and articulated buses and identify the specific effects of floor/entrance type, number of activities and occupancy on both boarding and alighting dynamics. A linear relationship between average boarding and alighting times and their respective standard deviations is also found, whereas the variability of boarding and alighting time decreases with the number of passengers boarding and alighting. After observing the cumulative boarding/alighting processes under different occupancy conditions, we propose a new model to estimate passenger activity time, by introducing critical occupancy – a parameter incorporating the friction between boarding/alighting and on-board passengers. We conduct regression analyses with the proposed and another popular model for simultaneous boarding/alighting processes, finding that the critical occupancy plays a significant role in determining the regime of boarding and alighting processes and the overall activity time. Our results provide potential implications for practice and policy, such as identifying optimal vehicle type for a particular route and modelling transit service reliability.  相似文献   

4.
《运输规划与技术》2012,35(8):825-847
ABSTRACT

In recent years, public transport has been developing rapidly and producing large amounts of traffic data. Emerging big data-mining techniques enable the application of these data in a variety of ways. This study uses bus intelligent card (IC card) data and global positioning system (GPS) data to estimate passenger boarding and alighting stations. First, an estimation model for boarding stations is introduced to determine passenger boarding stations. Then, the authors propose an innovative uplink and downlink information identification model (UDI) to generate information for estimating alighting stations. Subsequently, the estimation model for the alighting stations is introduced. In addition, a transfer station identification model is also developed to determine transfer stations. These models are applied to Yinchuan, China to analyze passenger flow characteristics and bus operations. The authors obtain passenger flows based on stations (stops), bus lines, and traffic analysis zones (TAZ) during weekdays and weekends. Moreover, average bus operational speeds are obtained. These findings can be used in bus network planning and optimization as well as bus operation scheduling.  相似文献   

5.
The public transport networks of dense cities such as London serve passengers with widely different travel patterns. In line with the diverse lives of urban dwellers, activities and journeys are combined within days and across days in diverse sequences. From personalized customer information, to improved travel demand models, understanding this type of heterogeneity among transit users is relevant to a number of applications core to public transport agencies’ function. In this study, passenger heterogeneity is investigated based on a longitudinal representation of each user’s multi-week activity sequence derived from smart card data. We propose a methodology leveraging this representation to identify clusters of users with similar activity sequence structure. The methodology is applied to a large sample (n = 33,026) from London’s public transport network, in which each passenger is represented by a continuous 4-week activity sequence. The application reveals 11 clusters, each characterized by a distinct sequence structure. Socio-demographic information available for a small sample of users (n = 1973) is combined to smart card transactions to analyze associations between the identified patterns and demographic attributes including passenger age, occupation, household composition and income, and vehicle ownership. The analysis reveals that significant connections exist between the demographic attributes of users and activity patterns identified exclusively from fare transactions.  相似文献   

6.
Smart card automated fare payment systems are being adopted by transit agencies around the world. The data-storage characteristics of smart cards present novel opportunities to enhance transit services. On the one hand, there are fare policies, where smart card holders are given specific rebates on the use of the service based on usage patterns or levels. On the other, there are non-fare policies, for instance if holders receive advantages, such as rebates and offers, from commercial partners. The purpose of this paper is to present a geodemographic framework to identify potential commercial partnerships that could exploit the characteristics of smart cards. The framework is demonstrated using data from Montreal, Canada. Household survey data, specifically trip ends, and business data points are jointly used to determine the exposure of various types of establishments to users of the Montreal Metro network. Spatial analysis of business establishments in the neighborhood of metro stations helps to identify potential commercial partners. The results illustrate the potential of geodemographic analysis to generate intelligence of commercial interest.  相似文献   

7.
This paper explores how we can use smart card data for bus passengers to reveal individual and aggregate travel behaviour. More specifically, we measure the extent to which both individual and bus routes exhibit habitual behaviour. To achieve this, we introduce a metric called Stickiness Index to quantify the range of preferences of users that always select to travel on the same route (high stickiness) to those with a more varied patterns of route selection (low stickiness). Adopting a visual analytic and modelling approach using a suite of regression models we find evidence to suggest that stickiness varies across the metropolitan area and over a 24-h period wherein higher stickiness is associated with high frequency users where there is substantial variability of route travel times across all alternatives. We argue that our findings are important in their capacity to contribute to a new evidence base with the potential to inform the (re)-design and scheduling of a public transit systems through unveiling the complexities of transit behaviour.  相似文献   

8.
文章基于城乡公交发展的背景和特点,阐述了发展城乡公交的积极意义,分析了发展城乡公交存在的主要问题与成因,提出了发展城乡公交的建议,并论述了发展城乡公交进程的阶段性。  相似文献   

9.
Transit fares are an effective tool for demand management. Transit agencies can raise revenue or relieve overcrowding via fare increases, but they are always confronted with the possibility of heavy ridership losses. Therefore, the outcome of fare changes should be evaluated before implementation. In this work, a methodology was formulated based on elasticity and exhaustive transit card data, and a network approach was proposed to assess the influence of distance-based fare increases on ridership and revenue. The approach was applied to a fare change plan for Beijing Metro. The price elasticities of demand for Beijing Metro at various fare levels and trip distances were tabulated from a stated preference survey. Trip data recorded by an automatic fare collection system was used alongside the topology of the Beijing Metro system to calculate the shortest path lengths between all station pairs, the origin–destination matrix, and trip lengths. Finally, three fare increase alternatives (high, medium, and low) were evaluated in terms of their impact on ridership and revenue. The results demonstrated that smart card data have great potential with regard to fare change evaluation. According to smart card data for a large transit network, the statistical frequency of trip lengths is more highly concentrated than that of the shortest path length. Moreover, the majority of the total trips have a length of around 15 km, and these are the most sensitive to fare increases. Specific attention should be paid to this characteristic when developing fare change plans to manage demand or raise revenue.  相似文献   

10.
Abstract

The distinctions between short-run and long-run public transport demand elasticities have been highlighted in the literature, but the identification of long-run travel demand has been constrained by existing research methodology and the unavailability of longitudinal travel survey data. The pseudo panel data approach using repeated cross-sectional data has been suggested as an alternative to conducting a longitudinal travel demand analysis when genuine panel data are not available. This paper comprehensively reviews the background and the current practices of pseudo panel data research, and introduces the challenges in applied research that need further investigation, particularly for public transport. A case study using the Sydney Household Travel Survey data is presented to demonstrate pseudo panel data construction and to identify the short-run and long-run public transport demand elasticities using a pseudo panel data approach. The research findings suggest that the public transport demand elasticity of price in Sydney is ?0.22 in the short run and ?0.29 in the long run.  相似文献   

11.
ABSTRACT

The collection of big data, as an alternative to traditional resource-intensive manual data collection approaches, has become significantly more feasible over the past decade. The availability of such data, coupled with more sophisticated predictive statistical techniques, has contributed to an increase in attention towards the application of these data, particularly for transportation analysis. Within the transportation literature, there is a growing emphasis on developing sources of commonly collected public transportation data into more powerful analytical tools. A commonly held belief is that application of big data to transportation problems will yield new insights previously unattainable through traditional transportation data sets. However, there exist many ambiguities related to what constitutes big data, the ethical implications of big data collection and application, and how to best utilize the emerging data sets. The existing literature exploring big data provides no clear and consistent definition. While the collection of big data has grown and its application in both research and practice continues to expand, there is a significant disparity between methods of analysis applied to such data. This paper summarizes the recent literature on sources of big data and commonly applied methods used in its application to public transportation problems. We assess predominant big data sources, most frequently studied topics, and methodologies employed. The literature suggests smart card and automated data are the two big data sources most frequently used by researchers to conduct public transit analyses. The studies reviewed indicate that big data has largely been used to understand transit users’ travel behavior and to assess public transit service quality. The techniques reported in the literature largely mirror those used with smaller data sets. The application of more advanced statistical methods, commonly associated with big data, has been limited to a small number of studies. In order to fully capture the value of big data, new approaches to analysis will be necessary.  相似文献   

12.
ABSTRACT

Identifying the spatial distribution of travel activities can help public transportation managers optimize the allocation of resources. In this paper, transit networks are constructed based on traffic flow data rather than network topologies. The PageRank algorithm and community detection method are combined to identify the spatial distribution of public transportation trips. The structural centrality and PageRank values are compared to identify hub stations; the community detection method is applied to reveal the community structures. A case study in Guangzhou, China is presented. It is found that the bus network has a community structure, significant weekday commuting and small-world characteristics. The metro network is tightly connected, highly loaded, and has no obvious community structure. Hub stations show distinct differences in terms of volume and weekend/weekday usage. The results imply that the proposed method can be used to identify the spatial distribution of urban public transportation and provide a new study perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号