首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以空间管桁架组合梁试验和Abaqus有限元分析为基础,基于弹性理论分析方法推导了空间管桁架组合梁负弯矩区考虑剪切变形与滑移效应影响的变形公式。结果表明:由滑移效应引起的附加变形为计算总挠度的6%,由剪切变形产生的变形占总挠度比重为52%;从混凝土开裂荷载值到斜腹杆屈服荷载值的各级荷载作用下,考虑剪切变形与滑移效应影响的计算值与实测值、有限元计算结果具有较高的吻合度,平均偏差分别为4.1%和12.4%,实测值与有限元计算结果的平均偏差为12.9%。试验结果与有限元计算结果表明:该文建立的变形公式对空间管桁架组合梁负弯矩区的变形计算是合理可信的。  相似文献   

2.
为了解徐变对逐跨施工连续箱梁桥剪力滞效应的影响,基于能量变分法及混凝土徐变理论,建立2跨逐跨施工连续梁考虑剪力滞效应的混凝土徐变次内力计算公式,并以跨径为30m+30m的逐跨施工现浇箱梁桥为例进行计算。结果表明:对于存在施工过程体系转化的逐跨施工连续梁桥,徐变次内力增加了梁体在负弯矩区的弯矩、减小了梁体正弯矩区段的弯矩;考虑徐变效应后,截面的剪力滞效应有所减弱。算例结构中,支座负弯矩区最大剪力滞系数减小20.26%,跨中正弯矩区的剪力滞系数增加了2.1%。  相似文献   

3.
为了更精确地研究考虑剪切剪滞双重效应波形钢腹板组合箱梁的力学性能,首先运用有限元分析方法,在综合考虑剪力滞与剪切变形双重效应影响的基础上,通过能量变分原理导出了波形钢腹板组合箱梁的控制微分方程并给出了解析解;之后在该解析解的基础上进一步推导了单元刚度矩阵及结点荷载列阵,还根据相关方程编制了FORTRAN有限元程序;最后将室内模型试验梁对波形钢腹板简支梁和连续梁的实测结果与所提理论的计算结果、ANSYS实体单元模型的计算结果进行对比分析。结果表明:所提理论和模型试验、有限元模拟3种方法所得剪力滞系数和挠度值吻合良好,且理论计算值与模型试验实测值所得跨中剪力滞系数、挠度值更接近;简支梁在承受集中荷载作用比承受均布荷载作用同一截面处的剪力滞效应影响大,连续梁在承受集中载荷作用时,在支座附近处截面的剪力滞效应的影响比跨中要大,并在靠近弯矩零点的一部分区域内表现出负剪力滞现象;波形钢腹板简支梁、连续梁的剪力滞系数随跨宽比的增大而呈曲线减小。研究成果可将波形钢腹板考虑双重效应的复杂计算问题,方便地纳入普通杆系结构矩阵位移结构体系中,可直接得到用于结构设计的剪力、弯矩,从而避免建立复杂的ANSYS有限元模型。  相似文献   

4.
大悬臂钢-混凝土组合脊骨梁的剪力滞效应   总被引:2,自引:0,他引:2  
通过模型试验,首先研究了带波形钢腹板大悬臂挑梁的钢-混凝土组合脊骨梁正、负弯矩截面在集中荷载和均布荷载作用下的剪力滞效应,探讨了混凝土板和钢底板上弯曲正应力的横向分布规律;然后基于能量变分原理和换算模量法,提出了多弹性模量、多最大剪切转角差函数和考虑横向预应力影响的组合脊骨梁剪力滞效应的理论计算方法;最后分析了悬臂长度对组合截面剪力滞效应的影响.试验、理论和有限元分析结果的比较表明:组合脊骨梁的正、负弯矩截面均存在明显的剪力滞现象,所提出的理论计算方法能够满足工程设计的精度要求.  相似文献   

5.
波形钢腹板组合箱梁剪力滞效应的理论与试验研究   总被引:2,自引:0,他引:2  
基于能量变分法原理推导了波形钢腹板组合箱梁在集中荷载和均布荷载作用下的剪力滞效应计算公式,讨论了波高区混凝土的合理计算宽度取值问题;制作了2根模型梁、并进行了在集中荷栽和均布荷载作用下的加载试验,通过实测箱梁翼板的纵向应力分布来研究这种组合结构在外荷载作用下的剪力滞效应的变化规律;在此基础上利用空间有限元分析程序进行了数值分析.结果表明:剪力滞系数的理论值、模型实测值以及空间有限元计算值吻合良好,波高区混凝土按1倍波高进行取值计算时结果偏于安全;集中荷载相对于均布荷载而言,其剪力滞系数较大;结果证明了本文公式可用于波形钢腹板组合箱梁的剪力滞效应计算.  相似文献   

6.
为了解界面滑移效应对钢-混组合连续梁负弯矩区混凝土桥面板抗裂性的提升效果及工作机理,设计并制作采用常规剪力连接件和抗拔不抗剪连接件的钢-混组合梁各1组进行负弯矩区加载试验,分析试验梁预应力施加效率、关键部位纵向应变、梁体刚度及关键截面界面滑移情况。结果表明:采用抗拔不抗剪连接件时,梁体抗裂性更好,界面滑移效应可避免以往负弯矩区预应力通过常规剪力连接件传递到钢梁的情况发生,明显提高预应力效率;同时可使负弯矩区混凝土桥面板承受的拉应力分布更均匀,有效降低中支点截面的拉应力峰值,使后续裂缝宽度增长缓慢;加载前期2组梁体总体刚度没有明显不同,加载后期界面滑移使梁体结构刚度下降,变形增加,但变化幅度较小;抗拔不抗剪连接件对钢-混组合连续梁负弯矩区混凝土桥面板的抗裂性提升效果较好。  相似文献   

7.
为改善常规混凝土波形钢腹板(CSW)组合梁受拉区的受力性能,进一步减小结构重量并推动超高性能混凝土(UHPC)在桥梁工程中的应用,提出一种新型变截面预应力CSW-UHPC组合箱梁结构,为研究其基本受力特征,特别是其抗弯与抗裂性能,设计并完成了一片预应力变截面CSW-UHPC组合悬臂箱梁的负弯矩静力模型试验,测试得到试验梁的荷载-应变响应、裂缝开展模式、挠度及破坏荷载等试验结果。依据试验结果对结构的剪力滞效应和钢腹板承剪比进行了研究;并深入研究了CSW-UHPC组合箱梁的抗裂性能和抗弯承载力计算方法;同时,完成了试验梁的非线性有限元分析。结果表明:这种变截面CSW-UHPC组合箱梁表现出良好的受力、变形和抗裂性能;试验梁的悬臂根部截面产生了负剪力滞效应,剪力滞效应越靠近加载点越明显;悬臂端部到根部截面,试验梁腹板承剪比从80.33%逐渐减小至2.15%;试验梁的极限抗弯承载能力和抗裂弯矩的理论值与试验值较为吻合,建议在计算承载力时,k值取为0.1~0.2。研究成果可为变截面预应力CSW-UHPC组合箱梁结构的设计与应用提供参考。  相似文献   

8.
为了弄清超宽预应力混凝土箱梁斜拉桥在活载作用下的剪力滞效应、偏载效应等复杂结构行为,通过主梁压重试验及有限元仿真分析进行了对比研究。结果表明,正载工况负弯矩截面顶底板纵向应力较为均匀,正弯矩截面表现出正剪力滞效应,顶板剪力滞系数为1.6,底板剪力滞系数为1.2;偏载工况大部分测点的偏载系数为0.5~1.0,大部分测点的应力小于正载工况。  相似文献   

9.
为简化并准确分析波形钢腹板组合箱梁剪力滞效应,基于波形钢腹板组合箱梁能量变分法微分方程,考虑波形钢腹板剪切变形及体外预应力作用,采用有限梁段法推导得到梁段单元的系数矩阵和广义外荷载向量计算公式,求解波形钢腹板组合箱梁任意点的弯曲应力。以某等截面波形钢腹板组合简支试验梁为算例,将跨中截面正应力有限梁段法计算值与试验值、变分法及有限元法计算值进行对比,该方法跨中正应力分布与其它方法结果均吻合较好,顶板有限梁段法正应力峰值与有限元计算值相差仅1.6%,验证了该方法准确度较高。采用该方法分析伊朗德黑兰BR-06L/R特大桥波形钢腹板组合连续箱梁桥在悬臂施工及成桥阶段的剪力滞效应,结果表明:悬臂施工阶段,随着悬臂长度增加固定端剪力滞效应逐渐减弱;成桥阶段,中支点和集中荷载加载点处剪力滞效应非常显著,均布荷载作用下边跨正弯矩区剪力滞系数较大,中支点处的峰值为1.13。  相似文献   

10.
通过对采用分块预制桥道板的钢-混凝土组合连续梁的力学性能分析,得出不同剪力键布置形式对组合连续梁竖向位移、钢与混凝土间相对滑移及对钢梁应力的影响,以及两种不同施工方式对组合连续梁中钢梁应力、竖向位移及桥道板应力的影响。分析结果表明剪力键数量、布置间距及剪力键刚度是影响钢-混凝土组合梁的力学性能的重要因素,同时还表明:分区段安装预制桥道板比一次落架安装桥道板效果好,尤其是对负弯矩区桥道板,分区段安装可以减小负弯矩区段桥道板的受力,控制和预防早期施工阶段中负弯矩区段混凝土裂缝的产生。  相似文献   

11.
为确定合理的临时支撑间距与拆除时机、负弯矩区剪力连接件类型及是否设置桥面板预留槽等,以便于钢-混组合连续梁桥设置合理的预拱度,以某(40+75+75+40)m钢-混组合连续梁桥为背景,采用MIDAS Civil软件建立全桥有限元模型,分析相关设计与施工因素对预拱度设置的影响规律。结果表明:钢梁拼装时应采用临时密支撑,并在正弯矩区桥面板混凝土浇筑后再拆除临时支撑;负弯矩区应采用抗拔不抗剪连接件,桥面板正、负弯矩交界区域应设置桥面板预留槽;仅边跨设置向上的混凝土收缩徐变预拱度值,而中跨不需设向下的混凝土收缩徐变预挠度值。该桥边、中跨跨中钢梁制造预拱度分别为17.7mm和161.9mm,施工时考虑了10mm的弹性变形预抬值。成桥时组合梁线形误差在±10mm内,满足设计要求。  相似文献   

12.
为了准确反映连续组合结构桥梁负弯矩区的受力情况,将施加预应力法、静位移法2个影响因素进行对比分析[1].通过采用有限元软件建立仿真模型进行分析,从而得出这2种方法对结合梁负弯矩区的影响差异.在算例中通过对计算结果进行分析对比,证明2种方法都能较好地减小连续梁组合结构负弯矩区的应力.  相似文献   

13.
连续组合梁桥设计中的关键问题是能否有效抑制负弯矩区混凝土的开裂及裂缝发展。混凝土的开裂会降低组合梁整体刚度,并会加速混凝土板内钢筋、抗剪连接件甚至钢梁的腐蚀,降低整体结构的耐久性。以阳泉市某高速公路匝道钢-混组合连续梁桥为背景,介绍了影响负弯矩区混凝土开裂的影响因素,运用MIDAS FEA建立空间精细化有限元模型计算了负弯矩区混凝土在设计荷载作用下和超载作用下的裂缝宽度,并对比分析了另外5种裂缝宽度计算方法。结果表明,G匝道钢-混组合连续梁桥混凝土裂缝宽度满足规范设计要求,且具有较大储备。汽车活载与温度梯度负温差效应对裂缝宽度影响较大。同时,汽车超载对裂缝的影响较为明显,应该严格限制超载。  相似文献   

14.
矮塔斜拉桥的主梁不仅承受轴向压力,还要承担相当大的弯矩和剪力。为研究宽幅矮塔斜拉桥设置后浇带对主梁受力的影响,该文以东洲大桥为研究对象,通过建立拉索锚固区梁段空间实体有限元模型,确定了拉索轴向力作用下的传递角度,并分析了设置后浇带对主梁剪力滞效应的影响。结果表明:索力在顶板上呈凸曲线扩散,但为分析方便,可偏安全地认为其按一定的角度线性扩散;设置后浇带可以提高悬臂施工时顶板的压应力储备,并有效缓解悬臂结构的负剪力滞效应。  相似文献   

15.
为解决大跨钢-混组合连续梁桥负弯矩区桥面板的开裂问题,以某120 m主跨的钢-混组合连续梁桥为背景进行抗裂技术研究。采用MIDAS Civil 2020软件建立大桥空间杆系有限元模型,研究增强配筋技术、后浇成型技术、预应力技术以及抗拔不抗剪连接技术对桥面板抗裂性能的影响,并基于不同抗裂技术的工作原理和效果,提出适用于大跨钢-混组合连续梁桥负弯矩区桥面板的综合抗裂技术。结果表明:增强配筋技术可以有效控制裂缝宽度,但当配筋率超过0.015后,效果明显降低;采用后浇成型技术,调整混凝土桥面板的浇筑顺序可明显降低成桥时负弯矩区桥面板应力;张拉预应力筋可有效提升负弯矩区桥面板的预压应力水平;抗拔不抗剪连接件可显著降低活载下负弯矩区桥面板应力水平;采取优化桥面板混凝土浇筑顺序、在负弯矩区布置抗拔不抗剪连接件同时施加预应力、增加预应力锚固区的配筋率的综合抗裂技术,可明显降低负弯矩区桥面板拉应力,同时对桥梁结构的其他力学性能无明显影响。  相似文献   

16.
该文运用有限元方法,对60座不同截面的桥梁模型进行有限元分析,得出了每一座连续梁模型的最大正弯矩、最大负弯矩、梁端支座附近剪力及中间墩支座附近剪力分配系数。通过多元线性回归分析,得出了每一分配系数与车道数、跨度及箱体个数等主要参数的关系,即内力分配系数经验公式,可供设计参考。  相似文献   

17.
由于单箱多室波形钢腹板PC组合箱梁截面剪力滞效应与混凝土箱梁截面剪力滞效应相比有很大差异,并且波形钢腹板几乎承担了全部剪力,波形钢腹板的剪切模量也需要进行修正。为研究单箱多室波形钢腹板PC组合箱梁的剪力滞效应,从波形钢腹板PC组合箱梁的受力特点出发,以满足剪力滞翘曲应力的轴向平衡条件,采用二次、三次抛物线定义了单箱双室、单箱三室波形钢腹板PC组合箱梁的纵向位移差函数,利用势能驻值原理的能量变分法建立了波形钢腹板PC组合箱梁考虑剪力滞、剪切变形效应的控制微分方程组,并推导出简支梁、悬臂梁、连续梁在集中荷载、均布荷载作用下的解析解。通过解析法和有限元法分别计算了简支梁和悬臂梁的剪力滞效应,并研究了集中荷载和满跨均布荷载作用下的单箱多室波形钢腹板PC组合箱梁的剪力滞分布规律,结果表明:采用二次抛物线剪力滞翘曲位移函数推导的剪力滞系数更为合理;单箱多室波形钢腹板PC组合箱梁在跨中集中荷载下,波形钢腹板与混凝土顶、底板交界处的剪力滞效应较为突出;随着波形钢腹板PC箱梁室数的增加,剪力滞系数明显减少,且解析解与有限元数值解一致,表明了解析解的正确性,并通过分析给出了相应的剪力滞系数,可以为单箱多室波形钢腹板箱梁的设计计算提供参考依据。  相似文献   

18.
钢筋混凝土连续箱梁剪力滞效应试验研究   总被引:3,自引:0,他引:3  
通过对比例尺为1:6的钢筋混凝土单箱单室连续梁模型进行试验及有限元分析,对其剪力滞分布规律进行了试验研究,有限元分析结果与试验数据比较表明两者吻合较好。  相似文献   

19.
对于复合材料箱形梁来说,假设应力沿梁宽度均匀分布会对强度分析造成较大误差,剪力滞效应属于不可忽视的因素。该文通过对[0°/90°/0°/90°/0°]铺层的碳纤维复合材料层合板制成的薄壁箱形两跨连续梁进行静力加载试验,将试验结果与理论分析值进行了比较,研究分析了影响箱形梁的剪力滞效应。  相似文献   

20.
贺坤龙  许伟 《公路》2020,(7):119-123
为研究不同的支承方式对三跨波形钢腹板连续梁弯桥剪力滞效应的影响,采用大型通用有限元分析软件ANSYS建立了三跨波形钢腹板连续梁弯桥的三维有限元模型,考虑了2种典型荷载工况——跨中集中荷载和全桥分布荷载下,典型截面的应力分布情况,计算出截面的剪力滞系数,并对4种不同支承方式下的剪力滞效应进行了分析。研究结果表明,三跨波形钢腹板连续梁弯桥边跨跨中截面应力最小为固定支承,中间支座截面应力最小为中间偏心铰支承,中跨跨中截面应力最小为固定支承。内侧的剪力滞系数要大于外侧,集中荷载下的剪力滞系数要大于均布荷载下的剪力滞系数,各支承方式下的剪力滞系数差异不大,集中荷载作用下剪力滞系数最小的为中间偏心铰支承,分布荷载作用下剪力滞系数最小的为中间固定墩支承。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号