首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前,钢桥面体系中存在着正交异性钢桥面结构疲劳开裂和沥青混凝土铺装层易损这两大难题。超高韧性混凝土(STC)的成功研发为解决这两大难题打开了新的思路,以超高韧性混凝土为基体形成的钢-STC轻型组合桥面结构可大大增加钢桥面板的局部刚度,降低了正交异性钢桥面板各构造细节处的活载应力,大幅提高了钢桥面的抗疲劳寿命,同时改善了沥青面层的工作条件,大幅降低了铺装层出现病害的风险。本文以汕头礐石大桥桥面铺装维修工程为背景,介绍了轻型组合桥面结构首次在大跨径斜拉桥上应用的设计、施工及检验验收等情况。  相似文献   

2.
正交异性钢板-薄层RPC组合桥面基本性能研究   总被引:6,自引:1,他引:5  
为了解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂2类病害问题,提出了一种新型正交异性钢板-薄层超高性能活性粉末混凝土(RPC)组合桥面结构体系。基于某大桥建立有限元模型,并对比计算了纯钢梁和组合桥面结构中桥梁主缆索力和桥面系应力状态;同时,开展了足尺条带模型静载试验。研究结果表明:采用新型钢-RPC组合桥面结构后,钢面板及纵肋中应力明显降低且最大降幅超过70%,而主缆索力几乎不增加;RPC层开裂前的拉应力可达42.7MPa,远高于其在实桥荷载作用下10.08MPa的拉应力;该新型钢-RPC组合桥面结构可提高桥面系的刚度,降低钢桥面结构中的应力,从而能够基本消除钢桥面疲劳开裂的风险。  相似文献   

3.
为综合研究STC层厚度、隔板厚度、栓钉间距对轻型组合桥面结构疲劳性能的影响,分析各参数间的协作性,得到基于该3种参数下轻型组合桥面结构的综合优化设计参数。以某大桥为工程背景,建立ANSYS局部有限元模型,对不同STC厚度、隔板厚度、栓钉间距情形下,钢桥面典型易疲劳开裂细节进行应力幅计算,并采用名义应力法对计算结果进行评估。基于有限元分析结果,得出以下结论:轻型组合桥面结构可以大幅提高钢桥面板的局部刚度,但对于整体刚度的贡献有限。各设计参数下的轻型组合桥面结构,对面板与U肋连接细节应力幅的改善作用均很大,而对其他细节改善作用则相对较小,U肋与隔板交叉处隔板裂纹细节为轻型组合桥面结构的开裂控制细节;STC层厚度由45 mm增加到60 mm可进一步降低钢桥面各疲劳细节应力幅;隔板变厚对U肋与横隔板交叉处隔板裂纹细节、U肋下缘对接焊缝细节应力幅改善较大,降幅为20%~29%;栓钉变密对U肋与横隔板交叉部位、弧形切口处细节改善作用明显,应力幅降低22.01%~27.96%;模拟的12种轻型组合桥面结构方案中,有7种方案的典型疲劳细节均满足疲劳强度设计要求,有一种方案理论上基本不会疲劳开裂。  相似文献   

4.
为改善当前大跨径钢桥钢箱梁桥面板普遍存在疲劳开裂的现状,提升钢桥面铺装体系正常服役寿命,提出了一种钢-超高延性混凝土组合桥面方案:组合桥面主要由正交异性钢桥面板、配筋超高延性混凝土层和沥青磨耗层组成,钢桥面板上表面焊接栓钉,并设置防水黏结层,超高延性混凝土层与钢桥面板间通过栓钉相连,超高延性混凝土层上表面采取表面粗糙处理,并设置防水黏结层,确保与其上的沥青磨耗层之间形成可靠连接。以虎门大桥钢箱梁为背景,采用有限元软件Abaqus对所提出的组合桥面铺装体系进行了力学性能分析。分析结果表明:采用组合桥面铺装体系,可明显提升正交异性钢桥面铺装体系的整体刚度,使得正交异性钢桥面板关键受力部位的应力水平降低25%~45%,显著延长钢桥面板疲劳寿命。制作了足尺钢箱梁子结构试验模型并开展了疲劳试验研究,疲劳试验结果表明:在规范规定的疲劳车荷载及高于疲劳车荷载的疲劳荷载作用下,累计经历400万次疲劳试验后,组合桥面铺装结构铺装层和钢桥面板均未出现破坏迹象,采用钢-超高延性混凝土组合桥面,可有效延长钢桥面铺装结构使用寿命。研究成果为既有存在病害的钢桥钢箱梁承载力的恢复甚至提高,乃至新建钢桥的桥面铺装提供了一种有益的选择方案。  相似文献   

5.
为解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出钢-STC轻型组合桥面结构方案。此结构方案应用于含有钢箱梁栓接的旧桥桥面维修时,螺栓连接区域由于存在拼接钢板,导致局部接头区域STC层厚度骤减,刚度下降,受力变形趋于不利,易出现早期开裂现象,需进行局部优化设计。针对这一问题,就接头区域局部提出2项强化构造措施(①局部加密剪力钉、②部分纵向钢筋与拼接钢板局部焊接),并进行足尺条带模型试验。以礐石大桥螺栓连接区域为例,对拟同时采取上述2项措施的情况进行验算。研究结果表明:2项措施均在不同程度上阻滞了STC层顶面接头区域内微裂纹宽度的发展,延缓了开裂,尤其当采取第2项措施或同时采取2项措施时,STC层顶面接头区域晚于一般区域开裂,即接头区域不再是设计计算中需要控制的不利区域;STC层顶面可能出现的最大拉应力为11.5 MPa,小于试验开裂荷载对应的名义开裂应力17.7 MPa,满足设计要求,即钢-STC轻型组合桥面结构方案应用于礐石大桥桥面维修可行。  相似文献   

6.
为解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出钢-STC轻型组合桥面结构方案。此结构方案应用于含有钢箱梁栓接的旧桥桥面维修时,螺栓连接区域由于存在拼接钢板,导致局部接头区域STC层厚度骤减,刚度下降,受力变形趋于不利,易出现早期开裂现象,需进行局部优化设计。针对这一问题,就接头区域局部提出2项强化构造措施(①局部加密剪力钉、②部分纵向钢筋与拼接钢板局部焊接),并进行足尺条带模型试验。以礐石大桥螺栓连接区域为例,对拟同时采取上述2项措施的情况进行验算。研究结果表明:2项措施均在不同程度上阻滞了STC层顶面接头区域内微裂纹宽度的发展,延缓了开裂,尤其当采取第2项措施或同时采取2项措施时,STC层顶面接头区域晚于一般区域开裂,即接头区域不再是设计计算中需要控制的不利区域;STC层顶面可能出现的最大拉应力为11.5 MPa,小于试验开裂荷载对应的名义开裂应力17.7 MPa,满足设计要求,即钢-STC轻型组合桥面结构方案应用于礐石大桥桥面维修可行。  相似文献   

7.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

8.
为综合解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出了由正交异性钢桥面板与薄层超高韧性混凝土STC组合而成的轻型组合桥面板结构。由于STC层显著提高了桥面板的刚度,因此可对结构进行优化。在带U肋轻型组合桥面板的基础上,提出了带大U肋的轻型组合桥面板方案。将此方案拟应用于某大桥,与原结构相比,用钢量基本不变,而面板-U肋-隔板三者间焊缝总长度减少36%,不仅降低了施工难度,也减少了焊接缺陷,进一步解决了钢桥面板疲劳开裂的问题。采用4种不同的结构体系,建立了钢箱梁节段有限元模型,基于热点应力法,对体系的6个典型疲劳细节进行疲劳验算。结果表明:在大U肋轻型组合桥面板中,6个疲劳细节的应力水平与传统U肋轻型组合桥面板接近,降幅效果基本一致;同时,通过计算说明了大U肋轻型组合桥面板具有良好的横向受力性能,其栓钉也具有足够的抗疲劳性能。为探究此轻型组合桥面板STC层的纵向弯拉性能,开展了负弯矩条带足尺试验,确定大U肋轻型组合桥面板的STC顶层名义开裂应力为24.1 MPa,远超STC层计算最大拉应力10.92 MPa。以上分析初步表明:带大U肋的轻型组合桥面板有较好的疲劳和静力性能。  相似文献   

9.
钢-STC轻型组合结构桥面是基于超高韧性混凝土(STC)基础上研发的一种超级桥面结构;它通过剪力连接件的作用,使密配筋的STC层与正交异性桥面板协同受力,大幅度降低了钢桥面的疲劳应力幅,并有效解决了钢桥面铺装层易破损的世界难题。该文通过株洲枫溪大桥的运用实例,对钢-STC轻型组合结构桥面的施工技术及工艺要点进行总结和归纳,为推动该项技术的应用发展提供经验。  相似文献   

10.
针对武汉军山长江大桥桥面铺装层损坏和正交异性钢桥面板疲劳开裂的问题,珠京方向半幅桥面改造为钢-超高性能混凝土轻型组合桥面结构,厚55 mm的超高性能混凝土(UHPC)层采用短栓钉与钢桥面板连接,与上部SMA10沥青混凝土(厚30 mm)采用环氧树脂粘结材料连接。利用ANSYS软件建立局部梁段有限元模型,进行改造前、后的疲劳细节处应力幅对比分析,并基于健康监测系统以及钢箱梁局部应变监测系统,对组合桥面改造后效果进行实时监测。结果表明:UHPC层对面板与U肋连接细节应力影响极为明显,与柔性铺装相比,应力降幅最高为86.4%,可极大降低钢桥面板的开裂风险;桥面改造后,U肋底部、顶板底部、横隔板构造细节处的应力幅值、等效应力均明显降低,可显著提高钢桥面板的疲劳寿命。  相似文献   

11.
黄权锋 《城市道桥与防洪》2021,(5):102-103,138
目前国内大多数钢箱梁结构的柔性铺装在使用过程中均出现了铺装层开裂、脱粘、车辙、坑槽等病害,且正交异性钢桥面出现了包括纵肋-面板连接处疲劳开裂、纵肋-横隔板连接处疲劳开裂、横隔板弧形切口处疲劳开裂、纵肋拼接焊缝处疲劳开裂等病害.为避免这些病害情况的产生,采用了钢-超高韧性混凝土(STC)轻型组合桥面铺装型式.  相似文献   

12.
以在建洞庭湖二桥为工程背景,建立两种纵肋形式的轻型组合桥面板局部有限元模型,对比分析了两类结构的静力和疲劳性能。结果表明:与传统正交异性钢桥面板相比,轻型组合桥面板的静力和疲劳性能均有一定程度的改善,且全寿命经济效益显著;带开口肋的轻型组合桥面板基本消除了传统开口肋正交异性钢桥面板的纵肋过柔,荷载横向分配能力较差等缺点,应用前景广阔。  相似文献   

13.
为解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂等病害问题,提出一种基于钢筋网联结的正交异性钢板-轻质超高韧性水泥基复合材料(ECC)组合桥面结构体系。试验结果表明:1)基于钢筋网联结的钢-ECC组合桥面结构具有良好的承载能力和控制裂缝能力;2)不同配筋组合桥面板的开裂强度不低于4.33 MPa,能够满足组合桥面的横向抗拉应力要求;3)ECC和钢板之间界面的滑移值很小,界面抗剪能力强。  相似文献   

14.
装配式纤维混凝土组合桥面体系试验   总被引:1,自引:0,他引:1  
针对正交异性钢桥面疲劳开裂,传统沥青混凝土铺装层破损以及纤维混凝土铺装层采用整体现浇施工时需要大面积现场养护等技术难题,提出了一种新型装配式组合桥面体系,即:装配式活性粉末混凝土(RPC)层本体为现浇RPC层,其中嵌合有周围布设企口接头的预制RPC桥面板,并通过剪力钉与正交异性钢桥面板联合成整体,形成组合桥面。为验证该企口接缝的强度,进行了装配式纤维混凝土组合桥面结构模型试验及理论分析。研究结果表明:采用新型钢-RPC组合桥面结构后,钢桥面结构中的拉应力降幅可达49%;当企口接缝处出现肉眼可见的细微裂缝时,与接缝位置对应的同断面现浇RPC强度为12.5 MPa,表明此种接头形式将接缝承受的拉应力部分转化为剪应力,从而有效降低了装配式纤维混凝土组合桥面开裂的风险。  相似文献   

15.
针对正交异性钢桥面板顶板-U肋焊缝疲劳开裂问题,提出一种在钢桥面顶面粘贴小尺寸矩形板的疲劳加固方法.以某主跨1490 m的悬索桥为背景,建立正交异性钢桥面局部有限元模型,计算加固前、后钢桥面板顶板-U肋焊缝在车轮横向荷载与纵向移动荷载下的应力情况;分析加固板厚度、横桥向尺寸、顺桥向尺寸和材料属性等参数对加固效果的影响规...  相似文献   

16.
为估算正交异性钢桥面U肋与横梁相交处的疲劳寿命,以某新建铁路桥节段正交异性钢桥面足尺试件为研究对象,建立两个阶段有限元模型进行了计算分析。通过应用ANSYS有限元软件建立铁路桥节段正交异性钢桥面足尺试件整体模拟,对比分析了正交异性钢桥面U肋横梁相交处的应力和位移计算值与足尺试件相应部位的试验值,发现正交异性钢桥面有限元计算值与足尺试件试验值吻合的很好。在此基础上,采用子模型技术建立了正交异性钢桥面U肋与横梁相交处带椭圆形裂纹的二阶段模型,将退化奇异单元布置在椭圆形裂纹前沿,通过位移外推得到了不同裂纹深度下裂纹尖端的应力强度因子,得到不同裂纹深度与应力强度因子的关系曲线,分析了应力强度因子随裂纹扩展深度的变化规律。基于初始裂纹尺寸合理判定,将应力强度因子数值与裂纹尺寸的函数关系式代入疲劳裂纹扩展模型Paris公式,逐步数值积分得到正交异性钢桥面U肋与横梁相交处的疲劳寿命。计算结果与试验结果进行了比较,发现初始裂纹尺寸为0.1 mm时,计算结果与试验结果最为接近。不同初始裂纹尺寸的裂纹扩展曲线表明位于U肋与横梁相交位置裂纹的疲劳寿命主要消耗在开裂初期,后期裂纹扩展寿命对疲劳寿命贡献不大,这可以解释试验中观察到疲劳裂纹萌生、发展的现象。  相似文献   

17.
在大纵肋正交异性钢桥面板结构中引入混凝土结构层,通过栓钉将钢桥面板与混凝土结构层组成新型大纵肋正交异性组合桥面板,是从结构体系层面提高大纵肋正交异性钢桥面板疲劳性能的有效途径。基于有限元数值分析,明确了大纵肋正交异性组合桥面体系对于钢桥面板典型疲劳易损细节的应力幅改善效果;采用足尺节段模型试验对结构的关键疲劳易损细节进行了疲劳试验研究,验证了关键疲劳易损细节在设计寿命期内的抗疲劳安全性和混凝土结构层在疲劳荷载作用下的耐久性,在此基础上对关键疲劳易损细节的疲劳损伤演化及结构体系的疲劳破坏模式进行了试验与理论研究。研究结果表明:大纵肋正交异性组合桥面板结构体系能够显著降低U肋与顶板以及U肋与横隔板连接细节的应力幅,横隔板开孔部位是控制钢桥面板疲劳性能的关键构造细节;设计寿命期内钢桥面板疲劳性能与混凝土结构层的疲劳耐久性均满足要求,且具有一定的安全储备;混凝土结构层负弯矩区疲劳开裂对钢桥面板各疲劳易损细节疲劳性能的影响不显著;大纵肋正交异性组合桥面板的疲劳破坏模式表现出典型的两阶段特征,栓钉发生疲劳断裂并导致组合效应局部劣化,进而加速钢桥面板关键疲劳易损细节的疲劳损伤累积速度并最终发生疲劳开裂。  相似文献   

18.
针对柔性铺装正交异性钢桥面板存在的钢板疲劳开裂和铺装层极易损坏的问题,提出超高性能混凝土(UHPC)-钢正交异性板组合桥面体系。以武汉军山长江大桥为背景,通过ANSYS有限元仿真计算分析该组合桥面体系正交异性板相对于柔性铺装正交异性板受力性能的改善情况,并通过单U肋2跨连续梁足尺模型试验对UHPC层的受力性能进行研究。研究结果表明:采用组合桥面后正交异性板各构造细节的应力大幅下降,其中面板应力降幅最大,加劲肋次之,横隔板最小;采用UHPC-钢正交异性板组合桥面体系后正交异性板主要构造细节最不利热点应力幅降至常幅疲劳极限以下,理论上具有无限疲劳寿命;模型试验显示在实桥最不利应力作用下,UHPC层未发现可见裂纹,当名义应力达到18.79 MPa时在模型中支撑板顶部UHPC上发现0.05mm宽的裂纹。  相似文献   

19.
<正>交异性桥面板在现代桥梁工程中被广泛应用,由于其纵横肋交错且钢顶板刚度不足,在局部轮载作用下容易出现应力集中现象,疲劳开裂问题突出。采用组合梁的思路,在正交异性桥面板顶板上铺设一层各项力学性能优异的RPC铺装,通过RPC和钢顶板的共同作用使得顶板刚度得到增强以减小局部应力集中造成的疲劳开裂现象。以苏通大桥正交异性桥面板为对比研究对象,针对三种常见疲劳易损部位的应力幅进行了对比研究,研究结果表明:采用新型RPC复合铺装的正交异性桥面板RPC-顶板整体刚度显著增加,局部应力集中现象减小;新型RPC复合铺装层能够显著降低关注细节的疲劳应力幅。  相似文献   

20.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号