首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
芒稻河特大桥主桥为(77+3×130+82)m预应力混凝土刚构-连续梁组合体系桥,主墩基础位于深水区,承台施工时抽水最大水头达18.7m。采用钢板桩围堰施工承台,围堰最大平面尺寸为45.6m×16.8m,采用拉森Ⅳw型钢板桩,单根桩长36m,围堰内设置5道内支撑。采用有限元软件,计算围堰3个主要施工工况下钢板桩和内支撑的变形、应力,以及围堰封底抽水完成工况下封底混凝土的抗浮安全系数和应力,计算结果均满足要求。施工时,采用定位导向架和平面定位框限位插打钢板桩,内支撑采用工厂拼装现场分层整体吊装、水下抄垫等工艺,应用水下分阶段吸泥、水下二次封底等施工技术,实现了深水钢板桩围堰快速安全施工。  相似文献   

2.
某大桥主墩钢板桩围堰施工中,由于钢板桩置入河床的深度大,在抽水过程中围堰内外侧的水压力差大,各层内支撑、钢板桩承受很大的水压力,故保证钢板桩及各层内支撑的结构安全、稳定性在施工中至关重要.笔者采用大型有限元Ansys软件对围堰结构进行建模,分析和计算了各种工况下钢板桩及各层内支撑的强度、刚度和稳定性.结果表明,围堰结构的设计满足强度、刚度和稳定性要求,可以按设计安全施工.  相似文献   

3.
杭州钱江铁路新桥位于钱塘江强涌潮地区,部分墩水下承台基础采用拉森Ⅵ型钢板桩围堰施工.以该桥56号墩为例,介绍拉森Ⅵ型钢板桩围堰施工及计算.钢板桩围堰施工期间,其外侧土压力按静止土压力,内侧土压力按被动土压力计算.2种最不利工况,第1种为钢板桩围堰吸泥完成到封底前,主要确定钢板桩入土深度及验算钢板桩、围檩及内支撑强度和刚度;第2种为钢板桩围堰抽水完成后,仅验算钢板桩围堰、围檩及内支撑强度和刚度.强涌潮时分2种工况计算:第1种为在钢板桩围堰整体计算模型上增加迎潮面涌潮压力;第2种为在钢板桩围堰整体计算模型上增加迎潮面和两侧面涌潮压力.  相似文献   

4.
《中外公路》2021,41(3):130-134
济南凤凰路黄河大桥跨黄河主桥为三塔(钢塔)自锚式悬索桥,跨径组合为(70+168+2×428+168+70) m,中塔位于黄河中心位置,承台埋入河床较深,采用拉森IVw钢板桩围堰施工承台,围堰最大平面尺寸为37.1 m×27.1 m,桩长21 m,共设置3道横向围囹。采用Midas有限元分析软件,根据施工工序同时考虑内外水压力、土压力及水流作用,选取了4个荷载工况计算钢板桩及围囹变形及应力情况。计算结果表明符合规范要求。设置具有一定刚度的、坚固的定位导向架系统实施钢板桩的插打,基坑按"先安装支撑后开挖,分层支撑分层开挖"的原则开挖,开挖过程中利用传感器对围堰进行实时监测,实现深埋式承台钢板桩安全快速施工。  相似文献   

5.
刘跃武 《桥梁建设》2012,42(Z1):112-115
天津海河春意桥主桥跨径布置为57.5 m+85 m+57.5 m,上部结构采用钢箱梁结构形式,主桥水中墩承台基坑开挖深度在水面以下12.5m,采用拉森钢板桩围堰的基坑支护形式施工.施工中将带锁口的拉森钢板桩打入承台基坑四周的河床,钢板桩之间通过锁口互相咬合,形成1个封闭的能够有效阻止水流渗透的长方形围堰,同时在围堰内加设3道内支撑,之后在封闭的围堰内进行基坑的抽水及开挖.  相似文献   

6.
以某跨河大桥主墩承台基坑施工为例,介绍了密扣式拉森钢板桩围堰支护方法;在确定施工总体思路和施工顺序的基础上,运用MIDAS/Civil软件建立力学模型,依据施工过程确定计算工况,对围檩与支撑构件的受力状况进行计算,验算了钢板桩的实际受力及支护结构的稳定性;并依据工程进度对钢板桩变形及内撑轴力进行了实时监控,确保支护结构的安全。  相似文献   

7.
考虑目前钢板桩围堰常规设计计算方法未考虑施工过程影响,结合某特大桥钢板桩围堰工程,分别采用三维有限元方法对考虑施工过程影响与未考虑施工过程影响的深水钢板桩围堰工程进行内力分析,并与简化计算结果进行对比。  相似文献   

8.
钢板桩围堰在桥梁深水基础施工中应用广泛。针对目前已有平面有限元法、空间有限元法和等值梁法等钢围堰分析方法,为研究钢板桩围堰结构的受力情况,本文以某大桥钢围堰施工为工程背景,将等值梁法和有限元法相结合,利用等值梁法基本原理,先将钢板桩简化为等值梁结构,利用平面有限元法对单位长度钢板桩等值梁结构建立有限元模型,计算出板桩每道内支撑的支撑反力,然后对多道水平内支撑分别建立有限元模型,将先前的支撑反力以单元力的形式作用在水平内撑模型上,计算出钢板桩与内支撑连接处的最大位移,内支撑的应力、轴力等。最后,将内支撑最大位移以强制位移的形式作用于钢板桩支撑处,对钢板桩强度和刚度进行验算,计算钢板桩所受应力情况,并与钢板桩围堰空间有限元模型计算结果和现场实测值进行比较,对比结果表明该方法对钢板桩围堰进行受力分析效果明显,钢板桩围堰具有足够的承载能力和安全性。  相似文献   

9.
采用拉森IV型钢板桩围堰做水中墩承台,考虑到承台施工的实际情况,确定围堰中共设五道支撑,以便于承托承台施工。以大型桥梁主墩承台围堰为例,介绍了对拉森钢板桩围堰的结构形式、受力状态与计算方法,并通过解析法与递推法提出了围堰内支撑布置的最合适方案以及确定方法以及拉森钢板桩围堰的施工工艺做了仔细的分析。  相似文献   

10.
以位于某铁路支线公路的L大桥为研究背景,研究内河深水暗流钢围堰施工关键技术。通过有限元建立该大桥钢围堰模型并设定模型条件,对钢板桩、土层相互作用以及河水水位上涨等展开拟合计算。依据水文地质参数及水流压强,计算钢围堰整体自重、静水压力、水浮力、流水压力等,将结果导入有限元模型,以模拟钢围堰施工过程,并清晰展现其中5种危险施工情况。试验结果表明,平衡前与平衡后土层位移最大值分别是8 736 mm、2 661 mm,该情况符合施工条件;钢围堰Y方向最大位移为76 mm,进行抽水与拆除支撑时位移增大,此时应加强施工安全警惕;钢围堰等效应力随静水压力增大而大幅度增加;钢板桩位移与水位成正比,水位上涨初期钢板桩位移与水位未上涨时相差不大,当水位上涨最高期时,钢板桩承受流水压力增大。  相似文献   

11.
以某采用钢板桩+内支撑支护体系的桥墩支护方案为例,介绍钢板桩围堰设计计算,分工况对钢板桩的内力、变形及内支撑轴力的变化规律进行分析,并结合相应计算断面的监测数据进行对比。钢板桩最大深层水平位移的位置随着围堰土方开挖深度的增加而逐步下移,且位于开挖面附近。随着开挖深度增加,钢板桩外侧水土压力合力作用点下移,伴随着相应位置钢支撑的架设,已架设的上部支撑轴力呈逐步减小的趋势。监测结果与计算结果二者变化规律及数值量级上基本一致,说明设计简化、参数取值及计算结果较为符合实际。  相似文献   

12.
以位于某铁路支线公路的L大桥为研究背景,研究内河深水暗流钢围堰施工关键技术.通过有限元建立该大桥钢围堰模型并设定模型条件,对钢板桩、土层相互作用以及河水水位上涨等展开拟合计算.依据水文地质参数及水流压强,计算钢围堰整体自重、静水压力、水浮力、流水压力等,将结果导入有限元模型,以模拟钢围堰施工过程,并清晰展现其中5种危险施工情况.试验结果表明,平衡前与平衡后土层位移最大值分别是8 736 mm、2 661 mm,该情况符合施工条件;钢围堰Y方向最大位移为76 mm,进行抽水与拆除支撑时位移增大,此时应加强施工安全警惕;钢围堰等效应力随静水压力增大而大幅度增加;钢板桩位移与水位成正比,水位上涨初期钢板桩位移与水位未上涨时相差不大,当水位上涨最高期时,钢板桩承受流水压力增大.  相似文献   

13.
针对深水基础施工中双壁钢围堰和钢板桩围堰的选择问题,文中对比分析了双壁钢围堰和钢板桩围堰的结构形式、适用性、施工工艺、工期和经济效益等。结合五峰山过江通道接线工程芒稻河特大桥深水基础施工,确定超长钢板桩围堰为优选方案,并对深水围堰施工所面临的受力和变形问题,提出改进措施和解决方案。  相似文献   

14.
为保证河谷汉江公路大桥主墩承台及墩身的施工安全,借助Midas/Civil有限元分析软件,对23号主墩钢板桩围堰整体模型进行了数值模拟计算,详细分析了围堰抽水干挖的6个工况,得出了各施工工况下围堰整体构件的应力及变形结果。分析结果表明,围堰计算所选用的计算参数、计算模型和计算方法基本正确,证实了所选围堰结构及施工工艺的合理性,为今后相同及相近工程条件下承台的施工提供了有益的借鉴。  相似文献   

15.
翁慧霞 《城市道桥与防洪》2013,(6):157-159,13,12
针对奉干路浦南运河桥的实际情况,介绍了双层钢板桩围堰在施工中的应用。其中详细介绍了钢板桩围堰的设计、施工工艺、施工监测及围堰拆除,并对钢板桩围堰的关键技术进行了总结。  相似文献   

16.
以深中通道东泄洪区非通航孔桥9#墩承台为背景,从围堰结构形式、钢板桩截面型号、施工工序、支撑体系等方面,介绍采用先支法施工工艺的装配式组合钢板桩围堰结构,采用有限元法对围堰施工全过程进行数值分析。帽形钢板桩+H形型钢的组合截面大大提高了钢板桩的刚度;先支法施工工艺使板桩和内支撑受力更加合理,使钢板桩围堰适用于更大水深;装配式内支撑结构体系,降低了钢板桩换撑的安全隐患,且可操作性强、构件装配化程度高,提高了围堰内支撑体系转换和材料周转使用效率,缩短工期,降低施工成本。  相似文献   

17.
钢板桩围堰是桥梁深基坑承台施工的常见方式之一。文中以广东增从(增城—从化)高速公路增江主桥主墩承台钢板桩围堰设计为例,根据深基坑承台围堰施工中出现的各种不利工况,对钢板桩及支撑系统的内力进行计算和分析,为同类工程提供参考。  相似文献   

18.
李攀  同伟军  邓富超 《城市道桥与防洪》2022,(8):135-137+143+21
泰东河大桥主桥为51 m+85 m+51 m单箱单室变截面连续箱梁,主桥主墩均位于泰东河为Ⅲ级运河河道内距岸边10 m,采用筑岛钢板桩围堰法施工。承台基坑开挖深度7.186 m,属于超过一定规模危险性性较大分部分项工程,施工安全风险大。通过结合基坑开挖过程中实际工况,对钢板桩围堰模型受力分析、计算,探讨了在模型定义施工阶段过程中判别结构变形前和变形后的计算依据和方法,为钢板桩围堰的顺利施工提供了技术保证。  相似文献   

19.
泰东河大桥主桥为(51+85+51)m单箱单室变截面连续箱梁,主桥主墩均位于泰东河为Ⅲ级运河河道内距岸边10m,采用筑岛钢板桩围堰法施工。承台基坑开挖深度7.186m,属于超过一定规模危险性性较大分部分项工程,施工安全风险大。本文通过结合基坑开挖过程中实际工况,对钢板桩围堰模型受力分析、计算,探讨了在模型定义施工阶段过程中判别结构变形前和变形后的计算依据和方法,为钢板桩围堰的顺利施工提供了技术保证。  相似文献   

20.
结合京沪高速铁路跨吴淞江连续梁大桥主墩承台钢板桩围堰深水基础施工项目,通过采用钢板桩、双壁钢、钢管桩围堰方案的对比,选择采用拉森IV止水钢板桩+填心(土)平台,变水上施工为陆地施工的方案,同时采用圆形钢筋混凝土围檩作为支撑,降低施工难度、扩充施工空间、节约成本的施工方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号