共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究考虑时空关联性对城市快速路交通状态进行了短时预测研究。首先,基于快速路上下游检测器数据分析交通流量和速度的时变特性,采用有序样本最优分割算法将一天划分为具有相对稳定交通状态的不同时段。然后,构建一种考虑上下游路段影响的空间向量自回归(Vector Auto Regression Model,VAR)模型,预测不同时段目标地点的交通流量和速度。研究结果显示,下游的交通状态对上游的影响不可忽视,尤其是在高峰时段。对于平峰时段,目标地点的交通状态很大程度上取决于上游路段,而受下游路段的影响较小。在此情况下,仅利用上游路段的交通状态来建模,便能达到足够的预测精度。另外,通过模型对比发现,相较于ARIMA预测模型和历史均值预测模型,本研究提出的VAR模型能够综合考虑交通状态的时空动态特征准确预测城市快速路交通状态。 相似文献
2.
传统的交通流预测技术使用静态和离线算法,无法对模型的参数值和内部结构进行在线调整.然而,交通流变化具有明显的动态性,其内在模式会随时间发生变化,导致构建好的模型准确度下降.针对上述问题,提出了基于数据流集成回归的短时交通流预测模型.将不断产生的交通流数据划分成数据块,每个数据块训练1个基础回归模型,然后加权组合为集成模型.通过不断训练新的基础模型,并置换出集成模型中准确度最差的基础模型,实现在线更新.在实测数据上的对比实验结果表明,与静态离线的BN模型相比,模型的均方根误差降低了19.5%,运算时间降低了48.7%,并能够快速适应交通状况发生明显变化的情况,适用于城市主干道路的短时交通流预测问题. 相似文献
3.
准确有效地预测短时交通量是实施交通诱导及控制的前提与关键。投影寻踪方法能从不符合正态分布的或没有多少先验信息的数据本身中找出其结构或特征,并能在线性投影中解决非线性结构的问题。文中将投影寻踪回归算法理论应用于短时交通量预测领域,采用正交Hermite多项式拟合岭函数,并用C++语言设计出相应模型的实现算法,对短时交通量实施滚动预测。利用某快速路实际观测数据进行预测实验,实验结果证实该方法具有可行性、可靠性,有一定的实用价值。 相似文献
4.
5.
6.
7.
8.
道路交通状况短时预测是现代智能交通系统的一个重要组成部分,而交通拥堵指数是交通状况最直接的体现,因此对交通拥堵指数进行预测具有重要的应用价值。利用小波神经网络结合城市道路交通拥堵指数分布的空间和时间性,建立银川市区部分路口的短时交通拥堵指数预测模型,利用实际交通拥堵指数数据对模型进行训练和短时预测,并将预测结果与实际数据进行对比。结果表明:模型在一定程度上拟合了真实交通拥堵指数的变化趋势,对所预测的2个交通路口的平均绝对百分比误差分别为13.68%和15.35%,能够达到较好的预测效果。 相似文献
9.
为了进一步提高短时交通参数多步预测的效果,以自适应指数平滑法、BP神经网络法和小波分析理论作为基础模型,利用前一时刻预测误差确定基础模型在组合模型中所占权重,提出了一种交通参数一步预测组合模型;通过分析交通参数合成和分解机理,在分别提出多时间尺度交通参数合成方法和交通参数分解方法的基础上,设计了一种基于多时间尺度一步外推的短时交通参数多步预测方法,采用某大城市感应线圈1 min时间尺度的交通参数数据进行了验证和对比分析.验证结果表明,交通参数一步预测组合模型的预测效果明显优于任一基础模型,且该方法的多步预测效果明显优于循环一步外推短时交通参数多步预测方法. 相似文献
10.
11.
12.
13.
14.
实时准确可靠的短时交通流预测是智能运输系统的基础,有很多种方法被用来对交通流进行预测.基于模式识别的交通流预测方法是较新的预测方法之一.提出一个用于短时交通流预测的模式和对应的模式识别算法,并对城区道路的交通流做了实验预测,结果表明在趋势上较为准确. 相似文献
15.
《公路交通科技》2017,(5)
为了提高短时交通流的预测精度,向交通管理部门和出行者提供更加准确可靠的交通信息,基于非参数回归与支持向量回归方法的特点,提出了一种混合预测模型(KNN-SVR)。该模型利用K近邻方法的搜索机制,重建与当前交通状态近似的历史交通流时间序列,然后利用支持向量回归原理实现短时交通流预测。针对实际的交通流数据,考虑预测路段上下游交通流的影响,对提出的KNN-SVR模型的预测精度进行了分析。研究结果表明:同时考虑预测路段和其邻近路段交通流影响的KNN-SVR模型具有更好的预测精度,其预测误差最小,平均为8.29%,而仅仅考虑预测路段交通流影响的KNN-SVR模型,其预测误差略高,平均为9.16%;KNN-SVR模型的预测精度优于传统单一的预测方法,如K-近邻非参数回归、支持向量回归以及神经网络方法。 相似文献
16.
基于非参数回归的短时交通流量预测与事件检测综合算法 总被引:37,自引:2,他引:37
针对目前短时交通流预测存在的问题 ,提出一种基于非参数回归的短时交通流量预测与事件检测综合算法框架并对框架中的每个步骤进行详细说明。为了进一步提高上述算法的精度与速度 ,对传统的非参数回归算法做了两方面改进 :基于密集度的变 K搜索算法与基于动态聚类和散列函数的历史数据组织方式。通过这些改进 ,使得上述基于非参数回归的算法成为一种“无参数”、可移植、高预测精度的实时预测算法 ,并能有效地用于短时交通流的预测问题中。现场实验充分表明该算法完全满足实时交通流预测的需要。 相似文献
17.
为通过视觉图形实现交通流时序特征可视化,精准掌握交通大数据驱动下交叉口交通主体的移动趋势,构建交叉口短时交通流可视化预测系统。通过Python中的Matplotlib实现交叉口交通流时序可视化,利用ARIMA模型进行短时交通流预测,并以OpenITS合肥市示范区黄山路-科学大道交叉口数据进行实例验证。结果表明,该系统可实时、在线实现不同时段交通流分布规律可视化,并能有效提取交通流时序特征,ARIMA(1,1,0)模型的3个评价指标的预测误差均小于10%,具有较高的预测精度。 相似文献
18.
19.
基于混沌理论的高速公路网短时交通流量预测研究 总被引:1,自引:0,他引:1
随着高速公路网的建成及其交通流量的不断增大,对高速路网交通流实时控制和诱导服务的需求日益突出,而高速公路网短时交通流量的预测,不仅是交通流实时控制和诱导服务的基础和依据,而且预测结果的准确性对改善高速公路网的通行能力和服务水平有重要影响。基于混沌时间序列分析和预测的理论,建立了高速公路网短时交通流预测模型,计算给定区域高速公路网多断面短时交通流量预测值,结果表明利用多维混沌时间序列法预测高速公路网短时交通流量可行且具有较高的精度。 相似文献
20.
智慧交通是智慧城市的重要组成部分,公共汽车(以下简称公交车)作为城市公共交通工具中最重要出行方式之一,不但方便了城市居民的工作和生活,而且为城市节能和环境保护提供了有效的解决方案。提高公交车站点客流量预测的准确度是智慧公交的研究内容之一。为了弥补传统时间序列模型(如ARMA和SVR)所具有的仅限单站点预测、短时间记忆等局限性,提高城市公交车站点客流量的短时预测精度,文中提出采用基于LSTM的神经网络模型对多个站点上下车客流量的长时间序列数据进行学习,从而对同一时段多个站点的客流量进行预测。试验结果表明,同时进行多站点客流量的学习能够提高预测结果的准确度,并且对抑制MSE和MAE有较好的表现,其中测试集MSE和MAE分别为3. 18人和1. 43人。基于LSTM的神经网络模型不仅能够很好发挥模型固有的长期记忆的能力,并且可以学习站点之间的潜在相关性,不仅对短时客流量预测具有明显的优势,而且拥有一定的泛化能力。使用LSTM进行多站点的公交车站客流量预测是可行的,并且较单一站点的客流量预测效果有明显提高;从客流量监测数据方面分析得出,多个公交车站点的客流量数据间存在相关性。论文成果对城市公交运营部门的快速决策和综合管理提供及时准确的数据参考具有现实意义。 相似文献