首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
侯满  曲春升  刘波 《世界桥梁》2012,40(4):26-29,41
马来西亚槟城二桥工程是采用英国标准的桥梁设计施工总承包工程,其主通航孔桥为主跨240m的肋板式主梁混凝土斜拉桥,设计采用悬臂浇筑施工。设计分析发现施工过程中已浇主梁梁段影响后续施工梁段横隔梁的受力和变形,后浇梁段横隔梁的结构自重、横隔梁预应力钢束和斜拉索张拉影响已浇梁段横隔梁的内力。为合理指导肋板式混凝土主梁横隔梁的设计,提出能准确反映这种横隔梁受力模式的实用计算方法——考虑施工过程的空间梁格法。应用表明,该方法可真实、动态地模拟横隔梁各施工阶段受力,避免简化方法的设计不足。  相似文献   

2.
杨进  罗永  罗学成 《公路》2011,(6):90-94
采用悬臂施工的大跨度预应力混凝土连续刚构,因0号块梁段的构造和受力较为复杂,保证它的质量与安全非常重要.以永定河大桥为工程实例,运用ANSYS有限元程序建立该桥0号块段的局部计算模型.考虑桥梁施工、成桥以及运营阶段多种工况对0号梁段进行了局部受力分析.计算结果表明:该桥梁原设计的0号梁段隔板与腹板、底板与交接处等位置比...  相似文献   

3.
悬臂施工连续梁桥,由于挠度理论计算值与实测值不一致,有必要根据已有梁段的实测挠度值来预测下一施工梁段的预拱度值。该文基于施工现场梁段挠度实测数据比较少的客观情形,引入针对小样本信息分析与预测的灰色系统模型,对安徽省芜湖市通江大道北延线工程裕溪河大桥的实测挠度进行了分析与预测。结果表明:灰色系统GM(1,1)及GM(2,1)模型均可用于预测悬臂施工连续梁桥预拱度,当基于GM(1,1)模型对下一节段的预拱度预测时,采用前4段作为原始数据序列,较采用前3段、全部前节段作为原始数据序列的相对误差小。  相似文献   

4.
针对工程计算中确定悬臂拼装施工的钢箱梁段制造尺寸时考虑不够全面的状况,综合考虑结构整体变形和梁段局部变形的影响,根据设计目标和施工要求,提出端截面转角补偿的方法,计算梁段2个端截面处边腹板的制造倾角,进而确定梁段的制造线形和预拼线形,提出了梁段端截面处的顶、底板长度补偿和梁段轴向长度补偿的计算方法,并对广州黄埔大桥斜拉桥进行实际计算分析。研究结果表明:若忽略梁段局部变形,则预拼线形的误差会随着悬臂拼装的进行不断放大,梁段顶、底板处的焊缝质量和焊接收缩变形将难以控制。  相似文献   

5.
依据无应力状态控制理论,以厦漳跨海大桥南汊主桥施工为背景,研究结合梁斜拉桥标准梁段施工、边跨合龙施工、中跨合龙施工控制方法.施工中斜拉索分两次张拉,桥面板湿接缝滞后1个梁段浇筑;施工过程中以主纵梁安装、浇筑湿接缝和斜拉索第二次张拉3个阶段为重点控制工序.通过采取悬臂端压重、调整合龙口附近的斜拉索索力、对边跨支架区梁段刚性转动和竖向顶升等控制措施,使边跨合龙状态满足顺接合龙的要求.中跨采用长圆孔工具拼接板为辅的自然降温法合龙方法;根据观测结果确定夜间最大温差,计算合龙间距的变化量,进而确定工具拼接板长圆孔的尺寸及合龙梁段的实际长度.  相似文献   

6.
吴湛 《公路与汽运》2023,(5):124-127+131
采用MIDAS/Civil建立某大跨预应力连续梁桥有限元模型,分析不同施工阶段荷载作用下桥梁位移和应力变化及施工过程中温度对主梁挠度的影响。结果表明,一个梁段施工完成后会影响前一个梁段标高,但各梁段控制偏差变化趋势大致相同;梁段悬臂越长,浇筑、张拉前后挠度越大;温度对悬臂梁段变形有很大影响,温度越高,悬臂竖向变形越大;大跨径连续梁桥悬臂施工时,预应力张拉产生的位移只能抵消一部分恒载位移;浇筑、张拉前后箱梁实测应力大多小于理论值,最大悬臂时梁段的预应力储备增大。  相似文献   

7.
为了解叠合梁斜拉桥施工及运营阶段叠合梁的受力性能,以广州市新建洛溪大桥为背景(主跨305 m的叠合梁斜拉桥,桥面板与钢梁通过剪力钉连接)进行研究.采用M IDAS软件建立全桥梁单元模型,对施工以及运营阶段进行模拟,分析全过程结构受力和位移,提取叠合梁段受力最不利工况;采用A baqus软件建立叠合梁局部梁段精细化模型,...  相似文献   

8.
针对北盘江大桥施工过程中第15#梁段斜拉索张拉到位后主梁实际标高和有限元模型计算理论标高存在偏差的问题,采用响应面法识别对主梁标高产生误差的主要参数,结果表明,15#梁段索力减少24.2kN、梁段重量增加33.3kN;将修正后的参数代入原计算模型进行分析,得到理论标高与实测标高的相对误差在±2mm以内。  相似文献   

9.
空腹式连续刚构桥施工过程受力特性分析   总被引:2,自引:1,他引:1  
北盘江大桥主桥为(82.5+220+290+220+82.5)m的预应力混凝土空腹式连续刚构桥,其三角区下弦采用挂篮辅以扣索施工,上弦采用支撑于下弦顶面的支架现浇施工,后续梁段采用挂篮悬臂浇筑施工。为研究该桥在施工过程中的受力特性,建立全桥有限元模型,对临时扣索张拉及拆除、预应力张拉、后续梁段施工等工况进行计算分析。结果表明,由于梁段浇筑、扣索张拉、预应力张拉的影响,上弦支架部分应力集中;三角区扣索索力变化不大,基本上随施工进度递减;中跨合龙后,支架拆除对主梁及斜腿受力影响不大,扣索拆除使主梁及斜腿应力峰值有效降低。  相似文献   

10.
大跨径斜拉桥总体计算与全桥施工控制的有限元分析,主梁通常采用单主梁的"鱼骨"简化模型来模拟。而对于大跨度曲线斜拉桥,尤其是采用π型截面主梁,"鱼骨"简化模型存在不能准确模拟桥梁的横向受力、扭转受力、剪力滞特性等缺点,无法全面真实地反映主梁的施工与运营全过程受力学特性;本文提出了以板单元模拟桥面板、梁单元模拟两个边肋和横隔梁的方法来模拟π型截面主梁(下文中简称"梁板组合模型");同时,以刚果(布)滨河大道平曲线斜拉桥为研究对象,考虑了该桥的实际施工特点,结合施工过程中各种因素(如浇筑新梁段、张拉预应力钢束、混凝土收缩徐变等)的影响,针对两种主梁有限元模拟方法进行了全面的对比研究。其结果表明:"梁板组合模型"更能够反映平曲线斜拉桥的重要力学行为和受力特点。  相似文献   

11.
拱肋是钢管砼的主要受力结构,文中介绍了该拱桥的施工过程,通过Midas有限元程序建立钢管砼拱桥的空间计算模型,对钢管砼拱桥进行施工及成桥阶段拱肋的静力分析,分析了拱肋的位移、应力等随施工阶段变化的规律,并对该桥在施工及成桥阶段的力学行为进行了研究。  相似文献   

12.
为研究悬臂施工单箱双室悬臂箱梁的剪力滞效应特点,建立分段施工的悬臂箱梁有限元模型,对自重荷载作用下的顶、底板正应力进行分析。结果表明:分段施工对悬臂端部附近2个梁段影响最明显,剪力滞系数最大值应提高10%,对远离悬臂端部梁段的影响可忽略;中横隔板的设置对单箱双室悬臂箱梁横的2个梁段的正应力分布有一定影响,剪力滞系数最大值可提高5%,对远离横隔板梁段的剪力滞效应基本无影响。  相似文献   

13.
崇启大桥主桥采用(102+4×185+102)m六跨变截面钢箱连续梁桥,主桥钢箱梁最高达9 m.在该桥高腹板设计过程中,对国内、外相关标准和规范进行研究,制定高腹板结构设计和验算思路.腹板在顺桥向不同区段采用4种不同的板厚,在箱梁内侧保持平齐.腹板横肋纵向间距1.4m,加劲肋均采用T形构造;腹板纵肋采用扁钢构造.墩顶附近梁段靠近底板的腹板纵肋与横肋焊接,其余部位腹板纵肋在横肋处断开.按照规范方法对腹板强度、最小厚度及纵肋设置位置合理性、纵肋刚度、横肋间距和刚度、区格局部稳定性进行验算,并采用ANSYS建立半桥板单元模型,对腹板强度和局部稳定性进行校核,结果表明,腹板设计满足规范要求.  相似文献   

14.
为研究斜拉-悬索协作体系桥施工中的重叠区架设方法、主梁梁段间连接情况及吊索、斜拉索安装方法对施工过程的影响,提出综合考虑结构内力及经济性的多因素分析方法,用以指导合理施工方案的比选。首先,基于斜拉-悬索协作体系架梁一般方法,对某公铁两用斜拉-悬索协作体系桥拟定4种不同的可行性施工方案;然后,基于全桥有限元模型的倒拆施工模拟计算,对结构内力及经济性指标进行分析,揭示各指标的变化规律,并确定了最优的施工方案。结果表明:当吊索设计为非张拉型时,可采用斜拉索区逐段刚接、重叠区与吊索区逐段铰接的梁段连接方式,待合龙后通过压重实现梁段刚接,最后张拉重叠区斜拉索;当吊索设计为张拉型时,可采用逐段刚接的梁段连接方式,且斜拉索及吊索应采用分次张拉。  相似文献   

15.
《世界桥梁》2021,49(4)
沪苏通长江公铁大桥天生港专用航道桥为主跨336 m的钢桁梁柔性拱桥,拱肋在钢桁梁上组拼成半拱,利用扣塔竖向转体,单边拱竖转重量约1 400 t。为选择合适的拱肋拼装和竖转施工控制措施及参数,采用MIDAS Civil软件建立有限元模型,计算3种不同拱肋拼装施工控制措施下钢桁梁的应力和变形,并分析拱肋竖转过程中拱肋受力、整体稳定性及参数敏感性。结果表明:通过边跨压重、单边拱提前预张扣索50%索力,可有效降低钢桁梁应力峰值和下挠量,确定为拱肋拼装施工控制措施;按计算的背索和牵引索试转索力和转体到位索力进行拱肋竖转,结构受力满足要求;拱肋转体的低阶稳定系数大于4,拱肋转体到位整体稳定性满足要求;按转体过程同层牵引索相对索力偏差不超过10%、背索与设计索力偏差小于10%、转铰同轴度偏差小于10 mm进行施工控制,拱肋合龙控制结果满足要求。  相似文献   

16.
短线法梁段预制拼装在桥梁施工中的应用越来越广泛。利用已浇筑梁段的控制点坐标,通过空间坐标变换,辅以误差修正,可以精确地计算出梁段匹配位置,从而进行下一梁段预制。笔者以厦漳跨海大桥北汊南引桥工程为实例,讨论实现控制点坐标空间坐标变换的方法,为梁段短线预制安装提供指导。  相似文献   

17.
武汉二七长江大桥主桥结合梁施工技术   总被引:4,自引:4,他引:0  
武汉二七长江大桥主桥为(90+160+2×616+160+90)m三塔双索面结合梁斜拉桥,其2~6号墩主梁为钢-混结合梁,采用预制拼装施工。4号(中塔)墩墩顶节间梁段采用无托架技术施工,3号、4号墩两侧梁段采用架梁吊机双悬臂对称架设法施工;5号墩上塔柱施工时采取塔梁同步施工技术,5号墩至4号墩跨中部位梁段采用单悬臂架设法施工;5号、6号墩间梁段采用钢管支架法施工。钢梁采用主动合龙技术,先合龙武昌侧梁段,再合龙汉口侧梁段。  相似文献   

18.
洞庭湖大桥君山侧A27-1梁段处于无吊索区域,其吊装受限于主缆线型及锚碇空间结构。故A27-1梁段是钢桁梁吊装施工的重难点。综合技术、安全、进度及经济等因素,A27-1梁段吊装采用了缆载吊机配合临时吊装系统进行连续荡移吊装。本研究详细地介绍了临时吊装系统,进行了荡移简要计算,并对连续荡移施工工艺、考虑因素及控制要点进行了详细的描述。经实际施工表明,连续荡移式吊装突破了常规施工方法,既经济科学,又大大降低了施工安全风险,对以后类似工程的施工具有一定的指导意义。  相似文献   

19.
为研究南广铁路西江特大桥主桥拱肋吊装过程中结构受力状态,指导拱肋吊装施工,对拱肋吊装施工过程进行仿真分析。该桥主桥为主跨450m的钢箱提篮拱桥,拱肋采用斜拉扣挂悬拼法施工,利用MIDAS软件建立整个拱肋有限元计算模型,采用"合理位移内力法"确定扣锚索初拉索力,对不同拆除过程中结构内力及位移变化的过程进行计算并确定拆除顺序,根据确定的扣锚索初拉索力以及拆索顺序计算出整个吊装过程的主体结构及临时设施的内力及位移。计算及实践结果表明:拱肋悬臂拼装过程中扣塔塔偏和应力以及主拱内力均满足规范要求;从跨中对称向拱脚方向拆除扣锚索的顺序为最优顺序,拆除过程中结构内力及位移变化过程平缓,无突变现象。实践表明,仿真分析结果顺利地指导了现场施工,大桥钢箱拱肋高精度合龙,吊装过程中结构施工处于安全状态。  相似文献   

20.
在短线法预制施工中,主梁往往伴随着多次体系转换。对于宽幅混凝土主梁,在多次的体系转换中混凝土梁段横向受力问题突出,对混凝土梁段施工过程中的受力与变形进行有限元计算分析是十分必要的。目前对于宽幅混凝土主梁横向受力分析多采用实体单元模拟计算,然而应用实体单元建模计算有着建模复杂、对计算机要求高等缺点,影响了计算效率。该文以石首长江公路大桥北边跨混凝土标准梁段预制施工的模拟计算为例,详细对比分析了梁单元与实体单元建模计算的优缺点。研究结果表明:用梁单元模拟宽幅箱梁的计算结果精确度略逊于实体单元,但已满足工程应用精度要求,用梁单元建模比实体单元建模更加简便、对计算机的要求要低,能大大提高计算效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号