首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
该文基于旋转压实试验研究了添加Sasobit温拌剂的温拌再生沥青混合料的压实特性,根据不同成型温度下沥青混合料的空隙率变化规律确定了试件最佳成型温度。试验用试件压实成型温度分别控制在165、155、145、135、125℃,通过研究不同压实温度下的温再生沥青混合料体积参数变化规律,确定了温拌再生沥青混合料最佳压实温度控制范围,并以此最佳温度为控制指标,系统研究了温再生沥青混合料的高温稳定性、低温稳定性及水稳定性等路用性能。  相似文献   

2.
再生沥青混合料最佳拌和温度及压实温度研究   总被引:1,自引:0,他引:1  
为了确定再生沥青混合料的最佳拌和温度和压实温度,首先通过SGC试验在不同温度下成型混合料试件,根据试件的体积参数确定再生混合料最佳压实温度,然后根据再生沥青在合适剪切速率下的黏温曲线确定再生沥青混合料的最佳拌和温度。试验结果证明:对于再生基质沥青混合料,试验确定的最佳压实温度及拌和温度接近由黏温曲线计算所得温度值;对于再生改性沥青混合料,其施工特性与新拌混合料有明显差异,由试验确定的最佳压实温度及拌和温度低于黏温曲线所得的温度,建议实际工程中确定再生改性沥青混合料压实温度及拌和温度时,可在再生沥青黏温曲线试验的基础上适当降低5~10℃。  相似文献   

3.
采用SGC旋转压实成型试件,以试件的空隙率为控制指标,研究Aspha—min温拌外掺剂对橡胶沥青混合料拌和与压实温度的影响,结果显示:Aspha—min能将橡胶沥青混合料拌和与压实温度降低20℃以上。并在此基础上评价Aspha—min温拌橡胶沥青混合料的路用性能,结果表明:Aspha-min温拌外掺剂的加入对混合料的高温性能几乎没有影响,对混合料的抗水损害性能有负面影响,能显著改善混合料的低温抗开裂性能。  相似文献   

4.
为确定温拌橡胶沥青排水路面混合料的成型温度,选择Sasobit、Evotherm为温拌剂,结合最佳空隙率法和粘温曲线法,在不同压实温度下分别成型Sasobit、Evotherm温拌橡胶沥青AR-OGFC13试件。通过目标空隙率确定2种沥青的压实温度区间,并推算温拌橡胶沥青排水路面胶结料对应拌和与压实粘度区间。结果表明:Sasobit、Evotherm温拌橡胶沥青拌和温度区间分别为144.4±3℃、149.3±3℃,压实温度区间分别为134.4±3℃、139.3±3℃,胶结料对应的拌和与压实粘度区间分别为1.3±0.3Pa·s、4.6±0.3Pa·s。通过验证,粘度区间适用于温拌橡胶沥青排水路面沥青混合料,且混合料具有良好的路用性能。  相似文献   

5.
以Superpave沥青混合料设计方法和SUP-13混合料为基础,4%空隙率为设计体积指标,确定发泡温拌沥青混合料的拌和与击实温度,并对发泡温拌沥青混合料的水稳定性、动稳定度和低温弯曲性能进行检验,利用Superpave旋转压实曲线分析发泡温拌沥青混合料的压实特性。研究结果表明:在低于21℃的情况下,发泡温拌沥青混合料的压实效果与热拌沥青混合料的路用性能差异较小,发泡温拌沥青混合料可用于沥青路面温拌施工。  相似文献   

6.
基于温拌再生技术,利用GTM设计法对沥青混合料的级配进行设计并确定拌和与压实温度,研究温拌再生沥青混合料压实特性随压实温度和旧料掺配比例变化规律,分析不同温度(100℃、110℃、120℃、130℃、140℃)、不同旧料掺量比例(0%、20%、30%、40%、50%)下温拌再生沥青混合料体积参数的变化规律。结果表明,温拌再生沥青混合料的空隙率随压实温度的提高而减小,沥青混合料的沥青饱和度、旋转剪切系数GSF、旋转稳定值GSI随着压实温度的升高而增加;压实温度一定时,温拌再生沥青混合料的空隙率随旧料掺量的增加而增大,沥青混合料的沥青饱和度、旋转剪切系数、旋转稳定值随着旧料掺量的增加而减小;旧料掺量在40%以下、压实温度在100℃~140℃范围,温拌再生沥青混合料的体积指标均满足要求。  相似文献   

7.
为确定泡沫温拌沥青混合料适宜的成型温度,采用旋转压实在不同温度下分别成型泡沫温拌SBS改性沥青混合料和热拌SBS改性沥青混合料试件,对比分析成型温度对泡沫温拌SBS改性沥青混合料体积指标的影响,从而确定泡沫温拌SBS改性沥青混合料的适宜成型及拌合温度,并采用车辙试验、低温小梁弯曲试验和冻融劈裂试验对其路用性能进行评价。结果表明:泡沫温拌SBS改性沥青混合料的适宜成型温度为130℃,拌合温度在140℃~145℃之间;与在160℃下成型的热拌SBS改性沥青混合料相比,在130℃下成型的泡沫温拌SBS改性沥青混合料的高温性能、低温性能和水稳定性能分别下降2.3%、1.88%和0.35%,但仍能满足规范要求;泡沫温拌SBS改性沥青混合料的路用性能较常规热拌沥青混合料无显著差异,性能优良。  相似文献   

8.
基于SGC压实效果确定了橡胶改性沥青混合料的级配以及拌和及压实温度,采取不同的方法室内对比分析并评价了温拌橡胶改性沥青混合料的高温性能、低温性能、抗水损害性能,定量分析了温拌橡胶改性沥青混合料的节能减排效益。结果表明,温拌橡胶改性沥青混合料的高温性能有所提高,温拌剂的添加并没有损害橡胶改性沥青混合料的水稳定性,而温拌橡胶改性沥青混合料的低温性能有小幅提高;温拌橡胶改性沥青混合料与热拌相比,拌和与压实温度降低20℃左右。  相似文献   

9.
针对温拌阻燃沥青混凝土混合料的温度离析现象,该文采用基于等体积原则确定沥青混合料压实温度中值的方法,以空隙率等体积指标来控制温拌阻燃沥青混合料拌和和击实温度的方法,采用在不同击实温度下的温拌阻燃沥青混合料室内马歇尔击实试验,通过比较不同击实温度对相应成型的温拌阻燃沥青混合料的空隙率、稳定度、流值、动稳定度的影响,最终确定温拌阻燃沥青混合料施工碾压的控制温度为130℃,碾压温度比规范值下降了20℃,并提出混合料温度离析控制措施,对温拌阻燃沥青路面施工具有一定的指导作用。  相似文献   

10.
文中对沥青进行改性处理,使沥青同矿料在较低的温度下进行拌和,从而得到温拌沥青混合料。通过选择常用于高速公路沥青路面的SBS改性沥青,并选取3种类型的温拌改性剂LQ1102、TEGO168和LX450,分别根据改性剂添加掺量的范围同SBS改性沥青混合生成不同种类不同掺量的温拌改性沥青。采用布氏旋转黏度和旋转平板黏度研究温拌改性沥青的黏温特性。试验结果表明,SBS改性沥青添加0.7%LQ1102后,拌和温度降低24.0℃,压实温度降低21.9℃;添加0.7%LX450后拌和温度降低17.1℃,压实温度降低16℃,且添加0.7%LX450和添加0.5%得到的温拌改性沥青的拌和温度和压实温度降低程度相差不大,其降黏效果十分接近。  相似文献   

11.
白映强 《城市道桥与防洪》2020,(1):151-154,M0017,M0018
为了研究温拌剂对SBS改性沥青混合料低温和疲劳特性的影响,采用SGC击实仪成型试件,测试温拌沥青混合料的空隙率与劈裂强度,确定拌和与击实温度,并利用低温小梁实验和四点弯曲疲劳试验测试沥青混合料的力学性能进行评价。研究结果显示:温拌剂掺入,降低了沥青混合料的成型温度.提高了SBS改性沥青混合料的压实性;温拌剂可以提高沥青混合料的破坏应变,使沥青混合料的柔性增加;养生可以提高温拌沥青混合料的低温性能;温拌沥青混合料(WMA)的疲劳寿命大于普通热拌沥青混合料(HMA),并且WMA的疲劳寿命对温度和应变的敏感性较低。  相似文献   

12.
为提高寒区就地热再生技术施工效率和再生沥青混合料性能,针对旧沥青老化程度和再生剂种类两个因素,对热再生基质沥青混合料的最佳拌和温度与压实温度进行研究。在完成热再生沥青混合料配合比设计的基础上,根据旋转黏度试验结果确定拌和、压实温度范围,再测定不同拌和、压实温度下制成试件的体积指标,以空隙率为4%所对应的温度作为最佳拌和、压实温度,并验证再生沥青混合料的路用性能。试验结果表明,在寒区就地热再生施工过程中,旧料掺量为90%的热再生沥青混合料的最佳拌和温度为160℃,压实温度为145℃,路用性能满足规范要求。  相似文献   

13.
通过不同拌和温度下的马歇尔试验结果,对AC-16温拌沥青混合料的拌和温度与温拌沥青混合料相关特性的关系进行研究。首先利用等体积原则确定温拌沥青混合料的拌和温度;此后,利用数理统计方法分析拌和温度对温拌沥青混合料空隙率、矿料间隙率等体积参数和马歇尔稳定度、流值等力学性能的影响。研究揭示了温拌沥青混合料体积参数和力学性能随拌和温度的变化规律,对温拌沥青混合料的设计和现场施工具有重要的指导意义。  相似文献   

14.
分别在不同温度下成型温拌SMA-13混合料试件和热拌SMA-13混合料试件,对比分析成型温度对SMA-13混合料体积指标、稳定度和流值的影响,并对热拌和温拌SMA-13混合料的路用性能进行检测。结果表明,温拌SMA-13沥青混合料的拌和温度宜控制在150~160℃,适宜成型温度为140℃左右;掺加Fasir温拌剂后,SMA-13沥青混合料的高温性能得到较明显改善,低温性能和抗水损害性能略有降低,但仍能满足规范要求。  相似文献   

15.
高黏度改性沥青按照使用方式可分为成品改性沥青和直投式改性沥青。现通过实验,来研究干拌时间、湿拌时间、压实温度等拌和工艺对直投式高黏度改性沥青混合料拌和均匀性和性能的影响。通过5℃肯塔堡飞散损失及其离散性来表征混合料性能和拌和均匀性。通过研究可知,增加5 s干拌时间直投式高黏度改性沥青混合料即可拌和均匀。相对于湿拌时间,增加干拌时间更能提高混合料的拌和均匀性。相对于成品改性沥青,直投式高黏度改性沥青,在压实温度降低20℃时,也能达到预期的压实度和混合料性能,更适用于寒冷季节施工的情况。  相似文献   

16.
以密级配沥青混合料AC-20为例,采用马歇尔试验方法,研究泡沫温拌沥青混合料在不同拌和、击实温度和沥青含量条件下的的体积性能.试验共制作100个马歇尔试件和40组最大理论密度测定试样.研究结果表明,在相同温度条件下,随着沥青含量的增加,泡沫温拌沥青混合料的毛体积密度、饱和度和流值增大,空隙率减小,稳定度出现一定的峰值,矿料间歇率变化发生一定的变异;在相同沥青用量条件下,随拌和及压实温度的升高,泡沫温拌沥青混合料的毛体积密度、沥青饱和度、稳定度增大,空隙率、矿料间歇率和流值则减小.同时,试验还研究了泡沫温拌沥青混合料适宜的拌和及击实温度和相应的最佳泡沫沥青用量.  相似文献   

17.
为了预估适用于温拌沥青混合料的拌和与压实温度,该文选择了4种基于不同机理的温拌添加剂,预估其合理的拌和温度和压实温度:在拌和温度预估阶段,以裹附率为控制指标,在考虑设定拌和温度的本质和温拌目的情况下,基于设定的温拌温度确定添加剂的合理掺量;在压实温度预估阶段,以变温度击实试验为手段,基于等密实度-击实温度类比原则,建立普通热拌与温拌混合料之间空隙率指标的对应关系,进而明确温拌混合料的可压实温度范围。研究表明:沥青黏度受到拌和温度和添加剂掺量的双重影响,基于设定温拌降温幅度并以裹附率为控制指标确定的添加剂掺量是合理的;由于添加剂降黏机理的不同,导致其在施工不同阶段的含量与状态不同,从而对施工温度的影响略有差异。  相似文献   

18.
采用SG温拌剂,针对4种级配类型(SMA-13、AC-13、AC-20、Sup-20)的沥青混合料,确定最佳油石比及拌和、压实温度;在最佳油石比条件下进行水稳定性、高温性能、低温性能等试验。结果表明:SG温拌改性沥青混合料拌和温度较热拌沥青混合料降低20℃左右;4种级配类型温拌沥青混合料水稳定性、高温性能、低温性能均符合规范要求;SG温拌剂B组分用量为0.2%~0.3%时,温拌沥青混凝土车辙试验动稳定度指标提升较快。  相似文献   

19.
陈伟  王林  胡宗文 《公路》2012,(3):117-121
首先采用马歇尔设计法对温拌SBS沥青混合料进行配合比设计,然后利用旋转压实仪(SGC)成型温拌混合料试件,根据体积参数变化规律确定合理的成型温度,最后采用冻融劈裂试验与汉堡轮辙试验对温拌混合料与热拌混合料的水稳定性能进行了对比评价。研究结果显示,温拌混合料可以采用与热拌混合料相同的配合比,利用旋转压实法确定的温拌SBS沥青混合料降温幅度可达35℃,并且其水稳定性能与热拌混合料相当。  相似文献   

20.
为了降低橡胶沥青混合料过高的成型压实温度,同时使其具备良好的路用性能,提出了掺入Sasobit 有机温拌剂降低其压实温度的方法,研究了不同温拌剂掺量下的橡胶沥青混合料路用性能.该方法在拌和温度150℃、压实温度140℃下分别进行了1%、3%和5%这3个温拌剂掺量下的浸水马歇尔试验和冻融劈裂试验.与此同时,对3%温拌剂掺量分别进行了140℃、150℃和160℃这3个压实温度下的车辙试验.试验结果显示,掺入Sasobit温拌剂后的橡胶沥青混合料可降低压实成型温度20~30℃,且各种试验条件下的马歇尔体积参数及其路用性能评价指标均满足密级配沥青混合料技术要求,压实温度140℃、3%温拌剂掺量下的综合路用性能最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号