首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究了车辆在城市干路上的轨迹摆动特性,开展了实车驾驶试验。以重庆市菜园坝长江大桥和长江滨江路为研究对象,用车载仪器采集自然驾驶状态下的行驶速度、车辆位置和车辆形心与车道线的横向距离数据。结果表明:大多数车辆会向左偏离车道中心线行驶;在路面悬空的行驶环境下驾驶人更倾向于将车辆靠向道路中央;女性驾驶人较男性驾驶人更注意车辆轨迹控制;熟练驾驶人在地面路段上对于车辆轨迹的控制优于非熟练驾驶人;相比于人类驾驶,无人驾驶车辆能够实现更精确的轨迹控制,轨迹横向摆动将显著减小,2.75~3.00 m的车道宽度可满足无人驾驶小客车的行驶需求。  相似文献   

2.
故障现象一辆2007年产的2.4L别克君越轿车,行驶里程为18万km。正常行驶中突然有较浓的白烟从发动机室处涌出,驾驶人立即紧急停车并打来求援电话,要求尽快前往救援,笔者在电话中告诉驾驶人想办法先将电源切断。故障诊断到达现场后,驾驶人叙述了故障发生的过程。该车在行驶中一切正常,在路口等红灯时开启了空调,不久就发现有白色的烟雾从发动机室处涌出,见此状况便迅速将发动机熄火,打电话求援。  相似文献   

3.
孙全军 《驾驶园》2010,(2):79-79
所谓空挡滑行.是指车辆在较高的行驶速度下或在下坡行驶中.驾驶人将变速器推入空挡,依靠车辆的惯性力滑行前进。此状态下,由于发动机怠速运转.驾驶人就认为空挡滑行是节省燃油消耗的一个有效且可行的方法,殊不知其中隐藏着很大的危害.春运已到.请各位客车司机当心.因为空挡滑行有不少危险。  相似文献   

4.
为提升智能汽车的自主决策能力,使其能够学习人的决策智慧以适应复杂多变的道路交通环境,需要揭示驾驶人决策机制。首先通过对自然驾驶数据的分析,发现在车辆行驶过程中能够反映驾驶人决策行为的主要运动特征参数存在极值现象,而产生极值现象的内在动因是驾驶人遵循“趋利避害”的基本决策机制,即驾驶过程中驾驶人力图实现机动性和安全性综合性能最优。受自然界包括物理和生物行为上的众多极值现象遵循最小作用量原理的启发,提出驾驶人决策机制遵循最小作用量原理的假设。随后建立抽象描述驾驶过程的物理模型,并提出最小作用量决策模型(Least Action Decision-making Model,LADM),通过与传统驾驶决策模型(经典跟车模型和换道模型)对比,分析结果显示LADM模型更具通用性。最后开展了实车试验,采集20名驾驶人在自由行驶、跟车行驶和邻车切入3种工况下的试验数据,分析计算并检验了不同驾驶人行车过程的理论最小作用量和实际作用量。试验结果表明:驾驶人在驾驶过程中的实际作用量与最小作用量之间无显著性差异,体现出驾驶人在行车过程中对安全和高效具有共性追求,验证了驾驶人决策机制遵循最小作用量原理。  相似文献   

5.
超车行驶作为驾驶人行车过程中重要的行为之一,与行驶安全性有着直接的联系。为建立符合驾驶人操作习惯的超车模型,本文通过实车试验采集不同驾驶人在高速公路的超车行驶数据,并以此采用多项式回归拟合建立基于驾驶人操作特性的超车模型,最后利用prescan软件对提出的超车模型进行了仿真分析,结果表明建立的超车模型能够真实地反映驾驶人超车过程中的操作习惯,为超车行为的研究提供了可靠的理论依据。  相似文献   

6.
为了合理确定高速公路夜间最高车速限制值,保障高速公路夜间行车安全,进行了驾驶人夜间距离识别与车速感知试验研究.分析了行驶速度、平曲线半径和纵坡坡度对高速公路驾驶人夜间识别距离与感知速度的量化影响,并建立了高速公路驾驶人夜间识别距离模型与感知速度模型.基于驾驶人夜间识别距离与反应制动距离间的安全行驶判别条件及驾驶人夜间感知速度模型,给出了高速公路夜间最高理论限速值与修正限速值的确定方法,并进行实际案例分析.研究结果表明:驾驶人夜间识别距离与行驶速度呈负线性相关,与平曲线半径呈正对数相关,与公路纵坡坡度呈负指数相关;驾驶人夜间感知速度与纵坡坡度无关,与实际行驶速度呈正线性相关,与平曲线半径呈负对数相关.  相似文献   

7.
一辆CA7180A2E的红旗轿车,累计行驶8万km,驾驶人反映该车在行驶中加速无力,有时发动机会突然熄火,特别是当用水冲洗过发动机并行驶了一段路程后,更容易出现上述故障,熄火后发动机无法再次起动,驾驶人与我站联系后,便将该车拖进我厂进行维修。  相似文献   

8.
陈莹  杜志刚  许富强  梅家林  焦志刚 《公路》2023,(12):206-214
为明确城市水下特长隧道驾驶负荷与驾驶特性,在武汉市公铁水下特长隧道开展了自然驾驶实车试验,选取侧壁规避程度、速度限速差和扫视角度动态变化量等3个指标,对驾驶模式进行分类,并基于熵权法计算驾驶负荷综合评价值,研究驾驶人在城市水下特长隧道驶入段与驶离段的驾驶特性与负荷。结果表明:在多数情况下,驾驶人会处于本车道内向右侧方偏移的道路行驶,但随着行驶距离的增加,规避行为逐渐减弱;驶离段速度限速差较低,扫视角度动态变化量较小,行驶速度规范程度高,且速度变化与侧壁规避程度相关性强;驶入段处驾驶人的主要驾驶负荷集中于对隧道内行驶环境变化的观测与判断,而出隧道时,对于速度的控制成为了驾驶人主要的负荷来源;胆小型、保守型、激进型三类驾驶人的驾驶负荷综合评价值在驶入段分别为7.21、9.91、16.22,在驶离段分别为6.61、9.47、17.25。研究结果可为城市水下特长隧道的安全改善提供理论性的支撑。  相似文献   

9.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

10.
针对现有智能汽车路径跟踪控制过程中较少考虑驾驶人特性的问题,设计了一种考虑驾驶人特性的智能驾驶路径跟踪算法.采用k均值算法对实车试验获取的相关数据进行聚类分析,根据操纵特征参数的规律性和差异性将驾驶人特性分为正常型、激进型、保守型3类.根据驾驶人特性分类及聚类结果,将不同驾驶人对车辆侧向、纵向行驶状态的不同偏好特性融入...  相似文献   

11.
驾驶人的生理心理因素会对驾驶人的驾驶行为产生一定的影响已经得到了较多认同,但是通过科学实验进行定量化实证分析的研究还较少。论文首先采用量表测量与仪器测试相结合的实验方法,以专业和非专业驾驶人为实验对象,利用气质类型量表测量驾驶人的气质类型;利用实验车在实际道路交通环境下行驶以获得跟驰车辆对前后车的行驶轨迹,并计算得到影响驾驶行为的关键参数。基于实验数据分析了驾驶经验和气质类型对驾驶人的行驶速度、加速度、跟驰距离、时间间隔等方面的影响。在跟驰时驾驶人的速度和加速度选择方面,专业驾驶人对速度和加速度的选择更加具有自主性,并且内向型性格驾驶人的行驶速度和加/减速幅度一般要小于外向型性格的驾驶人。在跟驰时驾驶人对空间和时间距离的选择方面,无论是跟驰距离还是时间间隔,气质类型对非专业驾驶人空间和时间距离选择的影响更加明显,并且各速度段内向型性格驾驶人选择的空间和时间距离一般大于外向型性格驾驶人;相同气质类型的非专业驾驶人选择的时间间隔都要大于专业驾驶人。经研究建立了驾驶人生理心理特性与驾驶行为特性之间的关系,为分析驾驶人行为特性与交通安全之间的关系奠定了良好的基础。  相似文献   

12.
芬兰多家公司合作开发出一套智能汽车服务系统,将驾驶人个人信息、汽车行驶情况及汽车维修结合为一体,将使车辆故障检测、维修和紧急救援等更为便捷。  相似文献   

13.
雾环境下驾驶人行车与正常天气相比,在低能见度下视觉参照物较少,驾驶人更倾向于跟驰行驶。为研究雾环境下高速公路驾驶人跟驰行为,以真实雾环境下实车试验方式,选择多条高速公路作为试验路段,以Smart Eye眼动仪获取车辆在雾环境下高速公路驾驶人视觉参数,包含驾驶人注视区域、注视角度、注视持续时间、瞳孔直径、扫视速度以及扫视幅度等,以归一化方法对驾驶人注视重心进行分析,研究不同能见度下驾驶人的跟驰需求,并通过对雾环境下上述视觉参数进行规律总结。对雾环境下驾驶人跟驰特性进行统计及分类,将跟驰行为划分为主动、半主动、半被动以及全被动跟驰;通过分析雾区低能见度下驾驶人跟驰行驶条件,引入多维偏好理论及后悔理论,进行驾驶人跟驰决策模型构建,并基于差分法对模型进行参数标定及验证。研究结果表明:驾驶人在1次跟驰动态过程中,正常车道保持时驾驶人扫视速度较低,而当处于车道调整时,驾驶人扫视速度存在较大波动,且平均扫视速度较高,低能见度下驾驶人注视点转移速度27.0 (°)·s-1明显低于晴好天气的52.0 (°)·s-1;驾驶人在跟驰过程中,能见度对驾驶人跟驰时的视觉特征有显著影响,通过跟驰模型构建可为后续雾环境下车辆跟驰前后车距及车速预测提供理论支撑。  相似文献   

14.
<正>故障现象一辆江淮瑞风2.8柴油车(车辆型号为HFC6500KA2C8T1),搭载HFC4DA1-2B1发动机,累计行驶里程约为27万km。据驾驶人反应,该车行驶中发动机有时会自动熄火,且必须将点火开关置于OFF位后,才能重新起动着机。故障诊断与驾驶人沟通得知,发动机熄火没有任何规律性,有时早上发动机起动着机几分钟后就会突然熄火,有时在市区行驶中也会熄火,但在高速公路上行驶时熄火次数很少。同驾驶人路试了约20 km,发动机没有出现突然  相似文献   

15.
故障现象一辆福特麦克斯2.3AT车,行驶里程约为6.7万km。据驾驶人反映,该车在正常行驶过程中突然熄火,此后发动机就无法起动着机了。  相似文献   

16.
为了提高商用车的行驶安全性,避免因驾驶人的分心驾驶出现车辆偏离车道的问题,提出一种基于电液复合转向系统的商用车车道保持策略;在建立电液复合转向系统模型、二自由度车辆模型、预瞄驾驶人模型的基础上,设计基于驾驶人在环的MPC和ADRC串级的车道保持控制策略。首先,采用MPC算法将车辆横向位置控制的最优问题转化为二次规划求得目标前轮转角;然后,考虑电液复合转向系统的不确定和干扰问题,利用ADRC算法对目标转向盘转角和实际驾驶人的转向盘转角差值以转矩信号的形式进行补偿。同时研究车道保持系统对驾驶人的干预问题,引入干预系数的概念,采用模糊控制的方法,将驾驶人手力和车辆的运动状态作为输入变量,干预系数作为输出变量,保证整车行驶安全性的前提下减小车道保持辅助系统对驾驶人的干预。最后,通过MATLAB/Simulink仿真和硬件在环试验对所设计的控制策略进行验证。研究结果表明:所设计的基于商用车电液复合转向系统的车道保持策略能够及时地纠正因驾驶人的分心驾驶而导致车辆偏离所在行驶车道的行为,特别是在弯道处出现驾驶人转向不足或过度转向的情况时,能够将车辆维持在车道线之内,保证车辆的行驶安全性,同时由于干预系数的设计,使得驾驶人也有良好的人机交互体验感。  相似文献   

17.
1从一起油路故障看油箱开关定期维护的重要性一辆北京切诺基吉普车(化油器式发动机),驾驶人反映油路有故障,行驶中发动机会自行熄灭,熄灭后要等一段时间后才能重新起动,起动后一切正常,但行驶几十千米后又出现上述现象。路试结果如驾驶人所述,由于是夏天,我们怀疑是气阻  相似文献   

18.
故障现象一辆2008年生产的迈腾1.8T手动挡轿车,搭载BYJ发动机,行驶里程约为12万km。据驾驶人反映,该车最近在行驶中加速无力,最高车速不能超过120km/h,正打算将车开到修理厂维修,可没想到发动机在起动后怠速抖动,加速无力,一起步就熄火,于是拨打了救援电话。  相似文献   

19.
车道保持控制系统是汽车安全辅助驾驶的重要组成部分,可有效提高汽车主动安全性、避免车辆无意识地偏离本车道。目前,大部分车道保持控制系统在工作时将驾驶人的操作视为外界干扰,没有考虑人机共驾阶段下驾驶人与控制系统的控制权分配问题,易造成人机冲突、影响驾驶人的驾驶感受。论文兼顾驾驶人与辅助控制系统各自优势,基于人机共驾技术对车道保持控制系统进行研究。构建基于安全行驶区域与最晚预警边界相结合的车道偏离决策模型,在保证其预警精度的同时降低计算复杂性,根据车辆行驶状态和路面附着系数动态调整预警阈值;研究串级MPC-PID控制策略实现对车辆横向位置的控制,将最优问题转化为二次规划求得目标前轮转角,利用PID算法完成对目标前轮转角的跟踪;引入共驾系数对车辆的控制权进行分配,研究共驾系数分配模型,以车辆状态误差和驾驶人转向力矩作为模糊控制的输入变量、共驾系数作为输出变量,降低辅助控制系统与驾驶人之间的冲突;最后,利用CarSim与Simulink联合仿真对所研究的控制策略进行仿真验证,结果表明共驾系数能够根据驾驶人的操作和车辆运行状态的变化实现动态调整,辅助控制力矩与驾驶人输入力矩变化趋势相同,在保留驾驶人一定操作的基础下可避免车辆偏离车道、降低人机冲突。  相似文献   

20.
车辆进入自适应巡航工况下行驶时,不同风格的驾驶人会对自适应巡航控制系统(Adaptive Cruise Control,ACC)有不同的需求。文章首先通过对不同驾驶人在9种跟随试验下获取的实验数据分析,选取表征驾驶人风格的驾驶特征参数;其次对所有驾驶人驾驶特征参数利用K-mean算法聚类分析,将驾驶人三类,并利用BP神经网络建立辨识模型对驾驶人风格进行辨识。结果表明;文章提出的方法可以较高的准确率对驾驶人风格进行分类,提高自适应巡航系统适应驾驶人的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号