首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
护轨横向冲击振动模拟计算   总被引:1,自引:0,他引:1  
护轨对确保车辆顺利通过道岔起着重要的作用.在车辆-道岔空间耦合振动模型[1]的基础上,以12号单开提速道岔为例,利用轮缘槽和动态轮轨间隙量,给出了计算道岔护轨横向冲击力的方法,模拟计算了车辆侧向过岔时护轨的冲击振动情况.  相似文献   

2.
为使两种不同轨距的货车顺利通过道岔,设计了1 435 mm与1 000 mm轨距三线套轨铁路道岔。基于多体动力学理论建立车辆-套轨铁路道岔的轮轨系统空间耦合动力学模型,计算分析货车侧向通过标准轨距铁路道岔及直向通过米轨铁路道岔时的动力学响应,并研究过岔速度对动力学响应的影响。结果表明:货车侧向过岔时,车体横向加速度最大值出现在连接部分,其他动力学评价指标最大值出现在辙叉区,且不同速度下动力学响应波动较大;货车直向过岔时,各动力学评价指标最大值均出现在辙叉区;货车以45~70 km/h侧向过岔时,轮轨力、脱轨系数存在较大波动;货车以95 km/h以上速度直向过岔时,动力学响应明显增大。为使货车在满足安全限值的条件下侧向通过标准轨距铁路道岔、直向通过米轨铁路道岔,侧向过岔速度不应高于65 km/h,直向过岔速度不应高于105 km/h。  相似文献   

3.
高速列车在长期运营过程中,车轮将发生随里程增加而不断增大的磨耗,为探究车轮磨耗对车辆侧向通过道岔时的动力学性能的影响,建立高速车辆-道岔耦合动力学模型,在综合考虑不同磨耗程度的车轮对转辙器区钢轨接触几何影响的基础上,研究具有不同磨耗程度车轮的高速车辆侧向通过道岔时对高速车辆动力学性能的影响。研究表明:随着车轮磨耗程度增加,高速车辆侧向过岔时的轮对运动姿态和车辆动力学性能发生较大变化,车轮运营里程达到20万km后,轮轨横向力较标准车轮型面减小了42%,车体横向振动加速度较标准车轮型面减小了16%,脱轨系数较标准车轮型面减小了38%;车轮发生磨耗后,车辆系统的动力学性能、行车安全性和舒适性均有一定程度改善。  相似文献   

4.
基于采用ANSYS-DYNA软件所建立的LMA型踏面标准车轮和38号高速道岔辙叉区的三维有限元模型,研究车轮直向、逆向通过辙叉区时的轮岔接触状态和轮轨动力特性。通过所获得的车轮质心高度、接触斑位置和面积以及轮轨横向、垂向接触力的动态变化特征,分析车轮不同横移量对轮岔接触的影响。研究结果表明,车轮通过辙叉区时必然发生两点接触,且存在轮轨力转移过程;可动心轨式辙叉可消除可能引起车辆脱轨的道岔的"有害空间",并明显改善车辆过岔性能,但叉心区走行轨线的不连续仍将引起车轮和道岔的振动;轮对横移量对轮-岔的接触状态和振动有一定影响。  相似文献   

5.
利用能够准确反映轮岔接触特性的车辆-道岔系统动态相互作用模型,从轮岔振动和轮岔接触几何关系两个方面,研究岔心区心轨关键截面轨顶高度降低值对高速道岔系统动力的影响特性.结果表明,通过设置合理的长短心轨关键截面轨顶高度降低值可以明显降低轮岔动态相互作用,达到道岔区低动力作用目的.针对现有某种高速道岔心轨轨顶高度设置,提出心轨关键截面新的轨顶降低值方案.与既有轨顶高度设置相比,本文建议方案在不影响轮岔接触特性前提下降低了轮岔动态相互作用,有利于延长道岔使用寿命.  相似文献   

6.
岔枕受力与振动特性分析   总被引:1,自引:1,他引:0  
岔枕是道岔系统的重要组成部分,将岔枕作为弹性地基梁,利用车辆-道岔系统空间耦合振动模型,模拟计算了车辆过岔时岔枕各相关截面的受力情况,以及岔枕振劝加速度和弹性变形等振动特性。文章最后分析了过岔速度对岔枕振动特性的影响情况。  相似文献   

7.
应用有限元软件建立有轨电车6号单开道岔轨道刚度仿真模型,研究岔区刚度分布规律及其均匀化措施。研究结果表明,列车直向、侧向过岔时,在轨道的横向和纵向均存在较大的刚度不平顺。其中以辙岔区段不平顺幅度最大,转辙器部分次之,连接部分最小。根据所得规律提出有轨电车6号道岔刚度均匀化具体措施,与刚度均匀化之前对比发现,刚度均匀化之后列车直向和侧向过岔的最大里轨与基本轨刚度比均有所下降,直基本轨、直向里轨、曲基本轨、侧向里轨的刚度最大纵向变化率降低,轨道整体刚度不平顺有明显改善,可以满足有轨电车在站线或折返线的运输组织要求。  相似文献   

8.
高速道岔是高速线路中的重要组成设备,拥有比区间线路更加复杂的结构,岔区结构不平顺使车辆过岔时存在较大的轮轨冲击,威胁车辆过岔安全。为选取合理的评价指标对车辆过岔性能进行评价,总结了国内外动力学标准对车辆过岔指标的相关规定,从平稳性、稳定性和安全性三方面对车辆过岔动力学评价指标进行对比分析。选取适用于岔区的动力学评价指标,以高速动车组直向和侧向通过18号道岔时动力学性能为例进行计算分析,计算结果表明:车辆过岔动力学性能均在道岔动力学评价指标内,车辆过岔性能满足动力学指标要求。在进一步的道岔动力学仿真研究中,应理论与试验相结合,制定更为完善的岔区动力学评价指标。  相似文献   

9.
3号道岔侧股的曲线半径较小,受到的轮轨冲击力较大,这在一定程度上降低了有轨电车侧向过岔的安全性。为研究有轨电车侧向通过3号道岔时的动力学性能,选取了列车运行速度、摩擦系数、轨距和坡度4个参数作为影响因素。基于车辆动力学理论,对比分析了各影响因素不同取值下有轨电车侧逆向和侧顺向通过3号道岔时轮轨垂向力、轮轨横向力、脱轨系数及轮重减载率的变化规律。仿真结果表明,有轨电车侧顺向通过3号道岔的动力学性能总体优于侧逆向;在不同的速度、轨距和坡度工况下,侧顺向过岔的安全性优于侧逆向;在不同的摩擦系数工况下,侧逆向过岔的安全性优于侧顺向。4种影响因素对有轨电车侧向通过3号道岔时的轮重减载率影响最大。4种因素中,列车运行速度和摩擦系数对有轨电车侧向过岔的影响较为显著。  相似文献   

10.
不足位移对高速道岔动力特性的影响   总被引:1,自引:0,他引:1  
为揭示道岔不足位移对高速行车的影响,根据高速道岔、列车的结构特点、力学特性和相互作用关系,建立车辆-道岔耦合动力学模型,并以高速列车直向350km/h、侧向80km/h通过350km/h客运专线18号无砟道岔为例,分析不同不足位移情形下车辆和道岔的动力学特性。结果表明:尖轨、心轨不足位移对列车动轮载、钢轨动应力影响较小,对轮缘力、车体横向加速度、轮重减载率、脱轨系数影响较大;不足位移会严重影响高速列车直、侧向过岔的舒适性及安全性,影响高速道岔正常工作状态;牵引转换设计时,应严格控制道岔尖轨、心轨不足位移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号