首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,隔振垫浮置板轨道在城际铁路中已有应用,但对隔振垫刚度值选取缺乏系统性研究,导致其减振效果难以达到预期,针对此,开展隔振垫浮置板轨道合理刚度取值系统研究。通过建立车轨空间耦合模型和轨道-隧道-土体有限元模型,分析时速160~250 km城际铁路隧道段隔振垫浮置板轨道安全性、稳定性及减振效果,最终确定隔振垫刚度合理取值。研究表明,(1)速度一定时,随着隔振垫刚度增大,钢轨和浮置板垂向动态位移、隧道壁减振效果均随之减小;隔振垫刚度不变时,随着列车运行速度提高,轮重减载率和隧道壁源强振级随之增大。(2)隔振垫刚度为0.01~0.05 N/mm3时,轮重减载率、平稳性sperling指标均在规范限值内。(3)时速分别为160 km、200 km、250 km的线路在满足行车安全性和平稳性条件时,对应的隔振垫在荷载服役范围内的割线刚度应不低于0.02 N/mm3、0.03 N/mm3和0.03 N/mm3;(4)在满足减振效果不低于5 dB、浮置板轨道第三预压固有频率下,时速分别为160 km、200 k...  相似文献   

2.
为研究地铁列车提速对减振垫浮置板轨道的振动特征的影响,对比分析地铁列车行车速度为80 km/h和120 km/h工况下减振垫浮置板轨道时域和频域的实测结果。分析结果表明:行车速度对减振垫浮置板轨道结构垂向位移的影响不大;行车速度为120 km/h的工况下钢轨、浮置板、隧道的振动加速度1/3倍频程的峰值较行车速度为80 km/h的工况下的峰值分别有6.2、2.8、0.5 dB的增大;分频段分析各测点振动加速度综合振级,结果显示:在0~20 Hz与20~80 Hz频段内,只有钢轨的振动加速度综合振级增长超过5%,浮置板与隧道振级变化均小于2.5%,在80~120 km/h速度范围内,行车速度的提高对减振垫浮置板轨道隧道振动的影响并不明显。  相似文献   

3.
为指导制定我国浮置板轨道减振垫设计规范,探究德国浮置板轨道减振垫规范(DIN 45673-7:2010)以及我国浮置板轨道减振垫暂行技术条件(TJ/GW 121-2014)的科学性。以聚氨酯与橡胶减振垫为研究对象,依据上述规范开展室内测试,建立车辆-轨道刚柔耦合模型与轨道-隧道-土层耦合有限元模型,开展减振垫单一预压、单一频率减振效果评价方法的影响研究,探讨规范中减振垫浮置板轨道减振效果评价的合理性。研究结果表明:预压荷载大小(即列车轴重)与有载条件下浮置板轨道固有频率(即考虑轮轴参振的浮置板轨道系统固有频率)是控制减振垫浮置板轨道减振效果的关键因素;针对刚度近似线性且频变效应较小的橡胶减振垫,采用单一预压、单一频率刚度的评价方法对其减振效果评价影响较小。橡胶垫分别采用第2和第3预压参数时,隧道基底处Z振级插入损失分别为14.0 dB和13.0 dB,约有1 dB差异;对于刚度非线性明显的聚氨酯减振垫而言,不同预压评价方法的差异较大。聚氨酯减振垫分别采用第2,第3预压参数时,隧道基底处Z振级插入损失分别为10.1 dB和14.6 dB,可达4.5 dB或更大。建议针对不同运营情况,进一...  相似文献   

4.
城际铁路沿线振动敏感区段多、减振要求较高,橡胶浮置板轨道以其良好的减振性能得到了广泛应用。为研究橡胶浮置板轨道结构动力学特性及其影响因素,建立车辆-橡胶浮置板轨道动力学模型,并开展室内落轴冲击试验,分别从理论与试验角度对橡胶浮置板轨道动力特性进行研究。主要结论如下:(1)橡胶浮置板轨道能够保证城际铁路平顺性要求,轨道结构位移、振动加速度等指标均满足标准要求;(2)城际铁路轨道振动基频在64 Hz附近,橡胶垫刚度越小,振动控制效果越好,刚度建议取0.019~0.042 N/mm3;(3)底座振动随车速呈线性增大,设计速度的提高对1~8 Hz及80 Hz以上振动有明显放大作用;(4)通过落轴试验证明,橡胶浮置板轨道在32~100 Hz频段内具有良好减振效果,可减小底座振动8 dB。  相似文献   

5.
长沙地铁2号线一期工程沿线存在多处振动敏感区域,环评要求高,轨道系统采取了轨道减振器扣件、Vanguard先锋扣件、橡胶隔振垫减振轨道、钢弹簧浮置板轨道等减振措施。为科学评价不同减振措施或产品的减振性能,在2号线一期工程试运行期间,对减振轨道铺设的地段开展了综合测试。测试结果表明:相较较高频率的振动分量,4Hz以下的振动分量较难准确测量,建议分析减振效果时考虑频率范围4~200Hz;直/曲线对轨道结构振动响应影响显著,减振轨道铺设于直线地段和曲线地段时的减振效果略有差异;轨道减振器扣件可适用于振动预测超标量小于等于3dB的地段;Vangaurd扣件可适用于振动预测超标量为6~8dB的地段;橡胶隔振垫减振轨道可适用于振动预测超标量大于等于8dB的地段;对于振动预测超标量大于等于8dB的地段,特殊减振措施可选用钢弹簧浮置板轨道。  相似文献   

6.
目前,国内部分地铁设计速度已达120 km/h,有必要针对该速度条件下的减振垫浮置板动力特性以及减振垫刚度取值等问题展开专门研究。基于有限元软件,建立车辆-轨道-隧道耦合动力学模型,可对120 km/h速度条件下地铁车辆、钢轨、减振垫浮置板,以及隧道结构等细部结构的动力学特性进行详细的研究。经计算和检算可知,在减振垫浮置板上运行120 km/h速度的地铁A型车,其各项动力学指标均满足动力学检算标准;同时计算结果表明,减振垫面刚度宜取0.01~0.02 N/mm3.  相似文献   

7.
宫寅 《铁道勘察》2023,(2):131-136
隔离式减振垫浮置板道床、梯形轨枕道床及橡胶弹簧浮置板道床是城市轨道交通项目常用的3种减振道床,为全面对比其性能差异,依托国内某城市轨道交通项目,选取相同的车型、盾构隧道、供电制式,以及基本相同的车速、线路平面曲线、线路纵向坡度条件,从道床方案、模态、共振情况、安全性、减振效果等方面进行对比研究,并对道床施工工艺及施工注意事项进行总结。研究表明,地铁B型车以90~100 km/h速度通过内径5 900 mm盾构3种类型减振轨道时,均不会引起共振;行车安全性指标均满足规范要求;隔离式减振垫浮置板道床和梯形轨枕道床均满足>8 dB的减振要求,橡胶弹簧浮置板道床满足>12 dB的减振要求。  相似文献   

8.
橡胶隔振垫减振轨道是地铁高等减振地段常用的轨道型式,由于其与普通整体道床轨道间存在轨道刚度差,当列车通过时,势必存在钢轨挠度差,当车速较大时,过大的钢轨挠度差会对行车稳定性、安全性造成影响。基于此,以宁天城际相应工况为例,建立了车辆-轨道耦合动力学模型,通过自编程序计算探讨了橡胶隔振垫减振轨道与普通整体道床之间设置刚度过渡段的必要性,并提出了过渡段橡胶隔振垫的合理刚度取值范围为0.030 N/mm3~0.065 N/mm3,为橡胶隔振垫减振轨道过渡段的轨道设计提供依据。  相似文献   

9.
聚氨酯减振垫与橡胶减振垫浮置板轨道振动控制效果分析   总被引:1,自引:1,他引:0  
为了研究两种不同材料减振垫浮置板轨道的减振效果,以深圳某新建地铁线路隧道段为研究对象,测试了60 km/h的速度下聚氨酯减振垫轨道、橡胶减振垫轨道和普通道床轨道的振动响应,通过引入铅锤Z振级进行综合评价,分别在时域和频域内对两种减振垫轨道、普通道床轨道的振动特性进行对比分析,结果表明:(1)两种减振垫浮置板轨道结构均在10 Hz左右发生共振;(2)两种材料减振垫轨道在40 Hz范围内都没有减振效果;(3)聚氨酯减振垫相比橡胶减振垫减振效果更好,且减振频域更宽。  相似文献   

10.
针对北京地下直径线两处小半径大坡道地段环境振动敏感点,进行铺设橡胶浮置板道床的适应性分析,为国内干线铁路环境敏感点减振轨道选型及振动控制提供理论基础。利用有限元软件,建立列车-橡胶浮置板轨道-隧道基础三维动力分析模型,对其传递特性进行分析,对最不利工况进行动力计算及适应性分析。研究结论:(1)得出橡胶浮置板道床固有频率为16.75 Hz,并在27.3 Hz之后能明显起到隔振作用;(2)通过对动车组和SS9型机车通过直线段和曲线段的全过程进行动力仿真计算,橡胶浮置板道床的行车舒适性、安全性都满足规范要求。  相似文献   

11.
张欢 《铁道建筑》2020,(4):55-58,71
为减轻列车对广深港高速铁路狮子洋水下隧道基础的影响,须采取减振措施,因此开展动车组最高时速310 km CRTSⅠ型减振板式无砟轨道的减振性能试验研究。试验结果表明:设置减振垫层后砂浆层受力变大;轨道板与底座间垂向位移随减振垫层刚度增大而减小,轨道板与底座间横向位移较小,轨道板横向稳定性较好;减振垫层刚度0.04和0.06 N/mm^2地段,隧道边墙处插入损失最大值为20dB,轨道板至底座传递损失最大值为35.3 dB,底座和仰拱的振动加速度级较小,高频成分的振动抑制效果较好,但减振垫层刚度为0.04 N/mm^2时轨道板振动加速度级有所增大。综合考虑,减振垫层刚度以0.06 N/mm^2为宜。  相似文献   

12.
部分新建城市轨道交通线路设计时速已达160km,特殊减振地段采用钢弹簧浮置板轨道.为深入研究浮置板轨道的动力学特性,建立列车-轨道-隧道-土体一体化振动分析模型,分析各种行车速度及隔振器刚度条件下车辆通过钢弹簧浮置板轨道时轨道结构的动力响应及减振特性,并计算车辆行驶的安全性、舒适度等相关指标.计算结果表明:(1)列车运...  相似文献   

13.
为分析列车制动力和温度荷载对小半径曲线上带减振扣件整体道床轨道横向力学特性的影响,为小半径曲线上无砟轨道设计提供理论依据。参考贵阳地铁1号线带减振扣件的整体道床结构形式,简化钢轨-桥梁-墩台垂向耦合力学模型,应用有限单元法,计算分析不同列车制动力和温度力对小半径曲线桥梁轨道结构横向力学特性的影响。计算分析结果表明:从无砟轨道稳定性角度出发,对于在有小半径曲线桥梁上的带减振扣件的承轨台整体道床轨道,建议当圆曲线半径为450 m时,扣件横向刚度要大于5×107 N/m;当扣件横向刚度为5×107 N/m时,圆曲线半径要大于450 m;当扣件横向刚度为1×108 N/m时,圆曲线半径要大于350 m。当圆曲线半径为450 m时,为减小制动力对曲线钢轨的影响,建议尽量减小曲线长度,缩小钢轨横向位移值。  相似文献   

14.
为了研究列车通过隧道曲线段时减振垫道床的行车安全性及减振性能,以某地铁线路为研究对象,建立了车辆-轨道-隧道刚柔耦合模型,以模拟不同工况下隧道及列车的振动响应。结果表明:各种工况下车辆的平稳性及行车安全性均满足《高速铁路工程动态验收技术规范》的要求。在小半径曲线(R=600 m)隧道内分别铺设USM2020与USM1000W两种型号的减振垫,其轨道板道床均具有较好的减振性能,减振效果均超过了10 dB。对于采用了同一型号的减振垫,随着列车运行速度的增大,其减振效果更为明显。  相似文献   

15.
为研究小半径曲线段地铁不同轨道结构对钢轨波浪形磨耗(以下简称“钢轨波磨”)的产生与发展的影响,分析了列车通过橡胶浮置板轨道引起的振动特性问题。选取某地铁区段进行波磨测试,其中包括普通整体道床直线段、普通整体轨道曲线段和橡胶浮置板曲线段。此外,以橡胶浮置板区段某一代表断面为例,测试其隧道内的振动情况。研究结果表明:钢轨波磨主要出现在小半径曲线段的内侧钢轨,而其外侧钢轨波磨的产生和发展与轨道结构有着密切的关系;橡胶浮置板轨道的外侧钢轨更容易产生钢轨波磨问题;内侧钢轨先产生波磨,并在继续使用的过程中向外侧钢轨传递;波磨在整体刚度较小的橡胶浮置板轨道内发展速度更快;曲线段外侧钢轨的不平顺等级在所有波长范围内均有明显增大。  相似文献   

16.
120 km/h地铁多种减振轨道结构现场测试与分析   总被引:2,自引:1,他引:1  
为分析隧道内各种减振措施在地铁列车行车速度为120 km/h时的减振效果,以地铁现场测试为依托,在时域和频域内分析3种轨道结构各测试断面在行车速度为120 km/h下的振动特性。结果表明:DZⅢ-1型扣件普通整体道床轨道在各频段内对振动的衰减均有一定效果,隧道壁在低频范围内减振效果较好。梯形轨枕轨道结构轨枕至隧道壁间的振动衰减非常明显,约为50 dB。钢弹簧浮置板对振动的衰减主要在钢轨与浮置板之间完成,为50~80 dB。梯形轨枕轨道和钢弹簧浮置板轨道隧道壁主要响应频段内相对于DZⅢ-1型扣件普通整体道床轨道减振效果分别为22 dB和38 dB。  相似文献   

17.
橡胶弹簧浮置板道床作为一种新型减振降噪的轨道结构,其对周围建筑物减振降噪效果明显。但是其对车内噪声的影响如何尚无明确结论,需进行下一步研究。本文为了测试其对车内噪声影响,在深圳地铁11号线前海湾至南山区间,分别对普通整体道床地段和橡胶弹簧浮置板道床地段进行噪声测试。结果表明:列车在经过普通整体道床地段时,车内噪声A计权声压级的平均值为81.7~83.8dB;经过橡胶弹簧浮置板轨道时,车内噪声A计权声压级的平均值为81.7~85.1dB。  相似文献   

18.
为研究地铁小半径曲线波磨地段列车通过对地面振动和室内二次噪声的影响,在地铁某小半径曲线波磨地段展开实车测试。在列车通过速度分别为40km/h、50km/h 和60km/h 的条件下,分别测试钢轨打磨前后隧道内钢轨、道床和隧道壁的振动加速度,地上室内和室外振动加速度、室内二次噪声。结果表明,钢轨打磨前室内振动超标约7.3~15.7dB,二次噪声超标约1.9 ~11.5dB;钢轨打磨后仅室内振动在行车速度为60km/h时超出夜间标准约1.7dB,其余均不超标。测试结果证明钢轨打磨对于减轻地铁引起的振动和二次噪声的有效性。  相似文献   

19.
由于浮置板轨道减振效果较好,在地铁建设中使用比例大幅度增加。结合杭州地铁1号线钢弹簧浮置板和橡胶浮置板的测试结果,对比分析两种浮置板的自振特性、隧道内和地面减振效果。分析结果表明:受不同的轨道结构形式、不同的列车类型、运行速度、隧道结构等诸多因素影响,钢弹簧浮置板和橡胶浮置板轨道有不同的振动频率特性;钢弹簧浮置板竖向自振频率为7.90 Hz,橡胶浮置板竖向自振频率为14.87 Hz,钢弹簧浮置板和橡胶浮置板的高频减振效果高于低频的减振效果;橡胶浮置板对于高于25 Hz的振动有8~16 dB的减振效果;弹簧浮置板对于高于12.5 Hz的振动有8~22 dB的减振效果,钢弹簧浮置板轨道对于控制列车运行产生的环境振动更有效。  相似文献   

20.
研究目的:为满足速度120 km/h城市轨道交通快线特殊地段的减振需求,且便于施工、养护维修,提出一种装配式浮置板轨道新结构,基于有限元法和车辆-轨道系统耦合动力学,对该结构进行模态分析、动力指标评价以及减振效果评估,并对比分析不同板长下的影响。研究结论:(1)浮置板板长取3.55 m、4.75 m和5.95 m,其结构基频为12~14 Hz,增加板长会降低固有频率,但对各阶模态振型影响不大;(2)4.75 m和5.95 m浮置板轨道的车辆运行安全性、平稳性及轨道结构稳定性均满足要求,为使各项动力响应指标均满足要求,3.55 m浮置板轨道的钢弹簧支承刚度应大于8.5 MN/m;(3)3.55 m、4.75 m及5.95 m板长对应的分频振级均方根差值分别为14.32 dB、15.49 dB和16.48 dB,浮置板越长,在低频1~5 Hz减振效果越差,但在较高频20~125 Hz减振效果好,更符合城市轨道交通的减振需求,具体结构设计时应结合环评评价结果,根据施工条件和实际减振需求合理选择轨道板类型;(4)针对城市轨道交通特殊减振地段,本研究结论可为装配式浮置板轨道的选型和应用提供理论指...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号