首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Transportation infrastructure planning process requires cost–benefit analysis in the evaluation of project proposals. Value of time (VOT) facilitates the conversion of travel time savings, which is a significant proportion of benefits in monetary terms. In cases where VOT has not been established, planners resort to crude estimates that often results in erroneous or biased measurements of benefits. This is the case of the Western Visayas region in the Philippines where transportation studies are rare. Secondary cities and its peripheral regions have often been overlooked subjects of transportation studies. In this study, multinomial logit models using revealed preference data were estimated to facilitate the calculation of the VOT. The total cost, square of the total cost, and total time were identified as significant explanatory variables affecting mode choice. The square of the total cost term was introduced in the models in order to account for income effect. Results indicate that VOT estimates for the inter-island passenger transportation between Iloilo and Negros Occidental generally range from 78.15PHP to 179.15PHP (1.91USD to 4.37USD) depending on trip and traveller characteristics.  相似文献   

2.
ABSTRACT

Autonomous vehicles (AVs) are expected to reshape travel behaviour and demand in part by enabling productive uses of travel time—a primary component of the “positive utility of travel” concept—thus reducing subjective values of travel time savings (VOT). Many studies from industry and academia have assumed significant increases in travel time use and reductions in VOT for AVs. In this position paper, I argue that AVs’ VOT impacts may be more modest than anticipated and derive from a different source. Vehicle designs and operations may limit activity engagement during travel, with AV users feeling more like car passengers than train riders. Furthermore, shared AVs may attenuate travel time use benefits, and productivity gains could be limited to long-distance trips. Although AV riders will likely have greater activity participation during travel, many in-vehicle activities today may be more about coping with commuting burdens than productively using travel time. Instead, VOT reductions may be more likely to arise from a different “positive utility”—subjective well-being improvements through reduced stresses of driving or the ability to relax and mentally transition. Given high uncertainty, further empirical research on the experiential, time use, and VOT impacts of AVs is needed.  相似文献   

3.
This study investigates Pareto-improving congestion pricing and revenue refunding schemes in general transportation networks, which make every road user better off as compared with the situation without congestion pricing. We consider user heterogeneity in value of time (VOT) by adopting a multiclass user model with fixed origin–destination (OD) demands. We first prove that an OD and class-based Pareto-improving refunding scheme exists if and only if the total system monetary travel disutility is reduced. In view of the practical difficulty in identifying individual user’s VOT, we further investigate class-anonymous refunding schemes that give the same amount of refund to all user classes traveling between the same OD pair regardless of their VOTs. We establish a sufficient condition for the existence of such OD-specific but class-anonymous Pareto-improving refunding schemes, which needs information only on the average toll paid and average travel time for trips between each OD pair.  相似文献   

4.
In recent years we have seen important extensions of logit models in behavioural research such as incorporation of preference and scale heterogeneity, attribute processing heuristics, and estimation of willingness to pay (WTP) in WTP space. With rare exception, however, a non-linear treatment of the parameter set to allow for behavioural reality, such as embedded risk attitude and perceptual conditioning of occurrence probabilities attached to specific attributes, is absent. This is especially relevant to the recent focus in travel behaviour research on identifying the willingness to pay for reduced travel time variability, which is the source of estimates of the value of trip reliability that has been shown to take on an increasingly important role in project appraisal. This paper incorporates, in a generalised non-linear (in parameters) logit model, alternative functional forms for perceptual conditioning (known as probability weighting) and risk attitude in the utility function to account for travel time variability, and then derives an empirical estimate of the willingness to pay for trip time variability-embedded travel time savings as an alternative to separate estimates of time savings and trip time reliability. We illustrate the richness of the approach using a stated choice data set for commuter choice between unlabelled attribute packages. Statistically significant risk attitude parameters and parameters underlying decision weights are estimated for multinomial logit and mixed multinomial logit models, along with values of expected travel time savings.  相似文献   

5.
Under certain assumptions, values of travel time (VOT) can be divided into two parts: one associated with travel (i.e., the value of reducing travel time disutility) and the other associated with activities (the shadow price of time). The empirical results of combining RP and SP data showed that the VOT of travel was greater than that of activity. The results also showed that SP experiments that did not take or only took part of activities into consideration would underestimate VOT.  相似文献   

6.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

7.
Based upon a long-term historical data set of US passenger travel, a model is estimated to project aggregate transportation trends through 2100. One of the two model components projects total mobility (passenger-km traveled) per capita based on per person GDP and the expected utility of travel mode choices (logsum). The second model component has the functional form of a logit model, which assigns the projected travel demand to competing transportation modes. An iterative procedure ensures the average amount of travel time per person to remain at a pre-specified level through modifying the estimated value of time. The outputs from this model can be used as a first-order estimate of a future benchmark against which the effectiveness of various transportation policy measures or the impact of autonomous behavioral change can be assessed.  相似文献   

8.
This paper presents a novel application of static traffic assignment methods, but with a variable time value, for estimating the market share of high‐speed rail (HSR) in the northwest–southeast (NW–SE) corridor of Korea currently served by air, conventional rail and highway modes. The proposed model employs a time–space network structure to capture the interrelations among competing transportation modes, and to reflect their supply‐ and demand‐side constraints as well as interactions through properly formulated link‐node structures. The embedded cost function for each network link offers the flexibility for incorporating all associated factors, such as travel time and fare, in the model computation, and enables the use of a distribution rather than a constant to represent the time–value variation among all transportation mode users. To capture the value‐of‐time (VOT) of tripmakers along the target corridor realistically, this study has developed a calibration method with aggregate demand information and key system performance data from the NW–SE corridor.  相似文献   

9.
A common way to determine values of travel time and schedule delay is to estimate departure time choice models, using stated preference (SP) or revealed preference (RP) data. The latter are used less frequently, mainly because of the difficulties to collect the data required for the model estimation. One main requirement is knowledge of the (expected) travel times for both chosen and unchosen departure time alternatives. As the availability of such data is limited, most RP-based scheduling models only take into account travel times on trip segments rather than door-to-door travel times, or use very rough measures of door-to-door travel times. We show that ignoring the temporal and spatial variation of travel times, and, in particular, the correlation of travel times across links may lead to biased estimates of the value of time (VOT). To approximate door-to-door travel times for which no complete measurement is possible, we develop a method that relates travel times on links with continuous speed measurements to travel times on links where relatively infrequent GPS-based speed measurements are available. We use geographically weighted regression to estimate the location-specific relation between the speeds on these two types of links, which is then used for travel time prediction at different locations, days, and times of the day. This method is not only useful for the approximation of door-to-door travel times in departure time choice models, but is generally relevant for predicting travel times in situations where continuous speed measurements can be enriched with GPS data.  相似文献   

10.
This paper theoretically examines whether and how the value of travel time savings changes with the travel and individual socio-economic environments. A time allocation model for the general case of travel behavior is proposed following a review of basic theories of the value of time. Under some general assumptions, changes of value of travel time savings with travel time, travel cost, wage rate, and work time are examined by the comparative static analysis. Differences between the variation of the value of travel time savings and value of time as a resource are also discussed. The results provide the variation mechanisms of the value of time and verify some of the results of empirical studies.  相似文献   

11.
This paper addresses the theoretical and empirical issues involved in modeling complex travel patterns. Existing models have the shortcoming of not representing the interdependencies among trip links in trip chains with multiple non-home stops. A theoretical model based on utility theory and explicitly accounting for the trade-offs involved in the choice of multiple-stop chains is developed. Using this theoretical model, utility maximizing conditions for a household's choice of a daily travel pattern are derived. The optimum travel pattern is described in terms of the number of chairs (tours) traveled on a given day and in terms of the number of stops (sojourns) made on each of those chains. For a given household, the form of the optimum pattern is a function of the transportation expenditures (time, cost) required to reach potential destinations. Constraints on the conditions of optimality due to the limited and discrete nature of travel pattern alternatives are also considered. Parameters of the general utility function were estimated empirically using actual travel data derived from a home interview survey taken in Washington, D.C. The multinomial logit model is used to relate utility scores for the alternative travel patterns to choice probabilities. The resulting parameter estimates agree with theoretical expectations and with empirical results obtained in other studies. In order to demonstrate the empirical and theoretical implications of the model, forecasts for various transportation policies (e.g., gasoline price increases, transit fare reductions), as made by this model and by other less complex models, are compared. The results of these comparisons indicate the need for expanding the scope of existing travel forecasting models to explicit considerations of trip chaining behavior.  相似文献   

12.
13.
This paper considers a static congestion pricing model in which travelers select a mode from either, driving on highway or taking public transit, to minimize a combination of travel time, operating cost and toll. The focus is to examine how travelers’ value of time (VOT), which is continuously distributed in a population, affects the existence of a pricing-refunding scheme that is both self-financing (i.e. requiring no external subsidy) and Pareto-improving (i.e. reducing system travel time while making nobody worse off). A condition that insures the existence of a self-financing and Pareto-improving (SFPI) toll scheme is derived. Our derivation reveals that the toll authority can select a proper SFPI scheme to distribute the benefits from congestion pricing through a credit-based pricing scheme. Under mild assumptions, we prove that an SFPI toll always exists for concave VOT functions, of which the linear function corresponding to the uniform distribution is a special case. Existence conditions are also established for a class of rational functions. These results can be used to analyze more realistic VOT distributions such as log-normal distribution. A useful implication of our analysis is that the existence of an SFPI scheme is not guaranteed for general functional forms. Thus, external subsidies may be required to ensure Pareto-improving, even if policy-makers are willing to return all toll revenues to road users.  相似文献   

14.
This study analyzes the problem of conflicting travel time and emissions minimization in context of daily travel decisions. The conflict occurs because the least travel time option does not always lead to least emissions for the trip. Experiments are designed and conducted to collect data on daily trips. Random parameter (mixed) logit models accounting for correlations among repeated observations are estimated to find the trade-off between emissions and travel time. Our results show that the trade-off values vary with contexts such as route and departure time choice scenarios. Further, we find that the trade-off values are different for population groups representing male, female, individuals from high income households, and individuals who prefer bike for daily commute. Based on the findings, several policies are proposed that can help to lower greenhouse gas (GHG) emissions from transportation networks. This is one of the first exploratory studies that analyzes travel decisions and the corresponding trade-off when emissions related information are provided to the road users.  相似文献   

15.
Even though a variety of human mobility models have been recently developed, models that can capture real-time human mobility of urban populations in a sustainable and economical manner are still lacking. Here, we propose a novel human mobility model that combines the advantages of mobile phone signaling data (i.e., comprehensive penetration in a population) and urban transportation data (i.e., continuous collection and high accuracy). Using the proposed human mobility model, travel demands during each 1-h time window were estimated for the city of Shenzhen, China. Significantly, the estimated travel demands not only preserved the distribution of travel demands, but also captured real-time bursts of mobility fluxes during large crowding events. Finally, based on the proposed human mobility model, a predictive model is deployed to predict crowd gatherings that usually cause severe traffic jams.  相似文献   

16.
17.
In recent years, increasing recognition of the challenges associated with global climate change and inequity in developed countries have revived researcher’s interest towards analyzing transportation related expenditure of households. The current research contributes to travel behaviour literature by developing an econometric model of household budgetary allocations with a particular focus on transportation expenditure. Towards this end, we employ the public-use micro-data extracted from the Survey of Household Spending (SHS) for the years 1997–2009. The proposed econometric modeling approach is built on the multiple discrete continuous extreme value model (MDCEV) framework. Specifically, in our analysis, the scaled version of the MDCEV model outperformed its other counterparts. Broadly, the model results indicated that a host of household socio-economic and demographic attributes along with the residential location characteristics affect the apportioning of income to various expenditure categories and savings. We also observed a relatively stable transportation spending behaviour over time. Additionally, a policy analysis exercise is conducted where we observed that with increase in health expenses and reduction in savings results in adjustments in all expenditure categories.  相似文献   

18.
This paper investigates the impact of cordon-based congestion pricing scheme on the mode-split of a bimodal transportation network with auto and rail travel modes. For any given toll-charge pattern, its impact on the mode-split can be estimated by solving a combined mode-split and traffic-assignment problem. Using a binary logit model for the mode-split, the combined problem is converted into a traffic-assignment problem with elastic demand. Probit-based stochastic user equilibrium (SUE) principle is adopted for this traffic-assignment problem, and a continuously distributed value of time (VOT) is assumed to convert the toll charges and transit fares into time-units. This combined mode-split and traffic-assignment problem is then formulated as a fixed-point model, which can be solved by a convergent Cost Averaging method. The combined mode-split and traffic-assignment problem is then used to analyze a multimodal toll design problem for cordon-based congestion pricing scheme, with the aim of increasing the mode-share of public transport system to a targeted level. Taking the fixed-point model as a constraint, the multimodal toll design problem is thus formulated as a mathematical programming with equilibrium constraints (MPEC) model. A genetic algorithm (GA) is employed to solve this MPEC model, which is then numerical validated by a network example.  相似文献   

19.
We analyze the cost of access travel time variability for air travelers. Reliable access to airports is important since the cost of missing a flight is likely to be high. First, the determinants of the preferred arrival times at airports are analyzed. Second, the willingness to pay (WTP) for reductions in access travel time, early and late arrival time at the airport, and the probability to miss a flight are estimated, using a stated choice experiment. The results indicate that the WTPs are relatively high. Third, a model is developed to calculate the cost of variable travel times for representative air travelers going by car, taking into account travel time cost, scheduling cost and the cost of missing a flight using empirical travel time data. In this model, the value of reliability for air travelers is derived taking “anticipating departure time choice” into account, meaning that travelers determine their departure time from home optimally. Results of the numerical exercise show that the cost of access travel time variability for business travelers are between 0% and 30% of total access travel cost, and for non-business travelers between 0% and 25%. These numbers depend strongly on the time of the day.  相似文献   

20.
This paper presents a general framework to estimate the bus user time benefits of a median busway including the effects on travel time and access time. Unlike previous models, we take into account the effects of geometry and the interaction with the demand structure. Models for predicting the bus in-vehicle time benefits of a median dual carriageway busway against mixed traffic condition on 2 and 3 lanes roads are estimated using data from a case study in Santiago (Chile), using a bus travel time model empirically estimated and considering different base case situations, including mixed traffic operations and bus lanes. Results of the application show that the expected in-vehicle time savings of a median busway might be reduced by access time losses due to increased walking distances and road crossing delays. Also, that net time benefits can vary significantly according to the base situation and the structure of demand considered. These findings point out to the need of including a wider set of impacts when studying the benefits of median busways, beyond in-vehicle time savings only. The empirical work presented here is completely based on passive data coming from GPS and smartcards, what makes easier and cheaper to conduct this type of analysis as well as to do it with a comprehensive scope at an early stage of the development of a BRT project. This framework can be extended to other types of dedicated bus lanes provided that a corresponding bus travel time savings model is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号