首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A computational model is established to investigate the effects of a periodic gust flow on the wake structure of ventilated supercavities. The effectiveness of the computational model is validated by comparing with available experimental data.Benefited from this numerical model, the vertical velocity characteristics in the entire flow field can be easily monitored and analyzed under the action of a gust generator; further, the unsteady evolution of the flow parameters of the closed region of the supercavity can be captured in any location. To avoid the adverse effects of mounting struts in the experiments and to obtain more realistic results, the wake structure of a ventilated supercavity without mounting struts is investigated. Unsteady changes in the wake morphology and vorticity distribution pattern of the ventilated supercavity are determined. The results demonstrate that the periodic swing of the gust generator can generate a gust flow and, therefore, generate a periodic variation of the ventilated cavitation number σ. At the peak σ, a re-entrant jet closure appears in the wake of the ventilated supercavity. At the valley σ, a twin-vortex closure appears in the wake of the ventilated supercavity. For the forward facing model, the twin vortex appears as a pair of centrally rolled-up vortices, due to the closure of vortex is affected by the structure. For the backward facing model,however, the twin vortex appears alternately as a pair of centrally rolled-up vortices and a pair of centrally rolled-down vortices,against the periodic gust flow.  相似文献   

2.
In order to study the effects of wet compression on a transonic compressor,a full 3-D steady numerical simulation was carried out under varying conditions.Different injected water flow rates and droplet diameters were considered.The effect of wet compression on the shock,separated flow,pressure ratio,and efficiency was investigated.Additionally,the effect of wet compression on the tip clearance when the compressor runs in the near-stall and stall situations was emphasized.Analysis of the results shows that the range of stable operation is extended,and that the pressure ratio and inlet air flow rate are also increased at the near-stall point.In addition,it seems that there is an optimum size of the droplet diameter.  相似文献   

3.
The computational fluid dynamics(CFD) method is used to numerically simulate a propeller wake flow field in open water.A sub-domain hybrid mesh method was adopted in this paper.The computation domain was separated into two sub-domains,in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller,while hexahedral elements were used in the outer domain.The mesh was locally refined on the propeller surface and near the wake flow field,and a size function was used to control the growth rate of the grid.Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter(D) downstream.The numerical results show that the axial velocity fluctuates along the wake flow;radial velocity,which is closely related to vortices,attenuates strongly.The trailing vortices interact with the tip vortex at the blades’ trailing edge and then separate.The strength of the vortex shrinks rapidly,and the radius decreases 20% at one diameter downstream.  相似文献   

4.
In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.  相似文献   

5.
Modern processing plants use a variety of control loop networks to deliver a finished product to the market. Such control loops,like control valves, are designed to keep process variables such as pressure, temperature, speed, flow, etc. within the appropriate operating range and to ensure a quality product is produced. All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop. The important point is that in both operation and maintenance situations, the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure. This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″ control valve in class 150 and titanium material. A 16″ butterfly valve of class 150 was chosen for the control valve bypass, which provided a much higher flow capacity than the control valve. In this paper, four solutions are recommended to achieve the same coefficient value(Cv) for the control and bypass valve. Using the reduced size butterfly valve could be the cheapest and best solution. On the other hand, selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution. Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one. Selection of butterfly valve for throttling is the second cheapest option, but it has the least reliability. Different parameters such as space and weight saving, cost as well as reliability have been considered in evaluation of different solutions.  相似文献   

6.
The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.  相似文献   

7.
1/4 圆弧面沉箱防波堤设计分项系数研究(英文)   总被引:1,自引:0,他引:1  
The quarter-circular caisson breakwater (QCB) is a new type of breakwater, and it can be applied in deepwater. The stability of QCB under wave force action can be enhanced, and the rubble mound engineering can be less than that of semi-circular breakwaters in deepwater. In order to study the wave force distribution acting on the QCB, to find wave force formula for this type of breakwater, firstly in this paper, the distribution characteristics of the horizontal force, the downward vertical force and the uplift force on the breakwater were gotten based on physical model wave flume experiments and on the analysis of the wave pressure experimental data. Based on a series of physical model tests acted by irregular waves, a kind of calculation method, which was modified by Goda formula, was proposed to carry out the wave force on the QCB. Secondly, the reliability method with correlated variables was adopted to analyze the QCB, considering the high correlation between wave forces or moments. Utilizing the observed wave data in engineering field, the reliability index and failure probability of QCB were obtained. Finally, a factor Q=0.9 is given to modify the zero pressure height above SWL of QCB, and wave force partial coefficient 1.34 to the design expressions of QCB for anti-sliding, as well as 1.67 for anti-overturning, were presented.  相似文献   

8.
To analyse a possible way to improve the propulsion performance of ships,the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins. The pressure and velocity flow behind the propeller was calculated. The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller,which was then used by GAMMBIT to generate the calculation model. The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles. The results of the calculations agree fairly well with experimental data,which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.  相似文献   

9.
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.  相似文献   

10.
The development of studying flexible pipe bend reinforced by Kevlar fibers   总被引:3,自引:0,他引:3  
The flexible pipe bend can not only reduce the structural vibration and fluid noise in pipeline, but also realize the flexible connection of a horizontal line and a vertical line and compensate the displacement of three dimensions produced by the shock or vibration of pipeline in the special situations. Up to now, little attention has been paid to study the flexible pipe bend applied in the pipeline of medium or high pressure, because no appropriate framework materials can be used to reinforce it which must endure the burst pressure higher than 10 MPa. The investigation shows that it is possible to produce the flexible pipe bend of medium or high pressure if such fibers with high performance as Kevlar fibers are used to be its reinforced materials. However, its structural designing theory, manufacturing technology and measuring techniques aren‘t yet perfect and systematic, which leads to the instability of the performance of products. Furthermore, few references about its research can be seen. Therefore, it is necessary to systematically and thoroughly develop the structural designing theory, manufacture technology and measuring techniques of flexible pipe bend.  相似文献   

11.
张广  于开平  周景军 《船舶力学》2011,15(12):1335-1343
超空泡航行体机动过程中空泡形态的预测是目前该领域亟待研究的问题。文章在两流体多相流模型的框架内建立了用于求解通气超空泡流转弯机动的三维数值模型。通过求解RANS方程和SST(Shear Stress Transport)湍流方程,预测了圆盘空化器转弯机动条件下生成的通气空泡形态,并同Logvinovich独立膨胀原理的计算结果进行对比,验证了文中数值模型的有效性。在此基础上,分析了转弯半径对通气空泡的形态尺度的影响,对比研究了不同弗鲁德数条件下通气空泡的流场结构。  相似文献   

12.
董洪辉  王宝寿  陈玮琪  张珂 《船舶力学》2015,(11):1295-1303
文章针对定常可压缩泡状流中回转体的空化绕流进行了数值模拟,在给定来流速度和环境压力的条件下,对不同含气率下的空化与激波的相互作用进行了研究。首先,对含气率为0的情形进行计算并同试验数据进行对比,证明所采用的计算模型是可信的。其次,改变流场含气率从0至0.5进行计算,结果表明,随着含气率的增大,流场的可压缩性随之增强,体现为数值模拟得到了回转体绕流流场的3种波系,包括回转体头部处的脱体激波、分离面处的膨胀波和空泡尾端的斜激波。而空化与激波的相互作用则体现为:头激波削弱了空化效应,使得空化区域减小;由于空泡外形的影响,使得空泡尾端出现了斜激波;含气率超过一定值,空泡已经无法闭合在物面上,而是闭合在空泡尾端的激波面上,体现为空泡尾端壁面逆压梯度趋于平缓。计算结果揭示了泡状流中空化与激波相互作用的新的物理现象。  相似文献   

13.
本文基于航行体超空泡理论和格兰威尔线型设计方法,设计了三种具有不同前部线型的航行体模型.并针对所设计的三种模型和具有锥形前部外型的航行体模型在西北工业大学水洞中进行了前部线形对超空泡生成影响的实验研究.结果表明:超空泡生成速度和空泡成生所需临界通气量与航行体的轴向斜率分布有关,模型表面斜率轴向分布曲线越平坦或变化率越小,越有利于提高空泡的生成速度、减少超空泡生成所需的临界通气量.实验数据显示文中设计的三种格兰威尔前部线型航行体与锥形前部外型航行体相比,生成超空泡所需临界通气量都有明显减小,空泡生成速度有明显提高.文章研究方法为降低超高速航行体超空泡生成所需的临界通气量,提高空泡的生成速度提供了一条技术途径和研究方法.  相似文献   

14.
本文用奇点法解厚翼剖面局部空泡绕流问题。求解时精确考虑了空泡表面是一条流线的运动学边界条件,空泡表面压力为常数的动力学边界条件,以及水翼湿表面是一条流线的运动学边界条件,用迭代法求出了空泡表面的形状、压力分布等水动力特性,并与实验结果作了比较,得较好结果。  相似文献   

15.
文章在均质平衡多相流模型的基础上耦合输运方程型空化模型,通过求解混合介质的RANS方程、RNG k-ε湍流输运方程以及各相的质量输运方程,采用通用CFD软件—FLUENT数值模拟了水洞中带圆盘空化器航行体模型的定常通气空泡流动,研究了圆形截面闭式空泡水洞中洞壁效应对通气空化数和压力场的影响。得到的阻塞空化数线性正比于圆盘水洞直径比,且与三维圆盘自然空泡流的势流近似解基本一致,分析了洞壁效应作用下空化流场内的压力分布特点,并根据计算结果拟合了一定适用条件下通气空泡长度、最大直径和模型阻力系数的近似公式。  相似文献   

16.
超空泡航行体操舵过程会引起空泡变形,导致航行体流体动力学特性发生变化。为了了解超空泡航行体操舵过程中航行体的动力学特性,文中采用基于欧拉两流体模型的CFD数值模拟方法及动网格技术对超空泡航行体空化器、尾舵操舵过程以及航行体攻角变化过程中的空泡形态及航行体瞬态流体动力特性变化规律进行了研究。研究结果表明空化器操舵过程中空化器升力随偏转角基本呈线性规律变化,对航行体尾部滑行力的影响相对于攻角变化对滑行力的影响为小量;尾舵操舵过程改变了空泡尾部流场,对于航行体尾部滑行力会产生重要影响。  相似文献   

17.
螺旋桨设计参数对桨叶片空泡性能的影响分析   总被引:1,自引:0,他引:1  
温亮军  唐登海  辛公正  曾志波 《船舶力学》2016,20(11):1361-1368
文章基于扰动速度势面元法建立了在均流条件下螺旋桨桨叶片空泡数值预报方法,空泡模型采用压力恢复闭合模型。通过对5600TEU集装箱船螺旋桨空泡的数值预报,以及与试验结果的比较,验证了该方法的可行性。该方法能够较为快速准确地预报螺旋桨桨叶片空泡,可用于分析参数对螺旋桨空泡性能的影响,为抑制螺旋桨空化设计提供基础。在此基础上重点分析了桨叶侧斜、纵倾以及桨叶剖面型式对螺旋桨空泡性能的影响,计算表明加大侧斜能够减少空泡面积,空泡向外半径偏移;桨叶剖面的设计对空泡性能影响较大,优化设计桨叶剖面可以有效减少空泡面积,提高螺旋桨抗空化能力;纵倾向压力面弯曲的分布形式可以改善梢部的压力分布,减少叶梢附近空泡长度,从而可望减少由空泡引起的脉动压力。  相似文献   

18.
利用实验的方法研究了涂层对绕水翼空化流动特性的影响。分别针对喷涂环氧涂层和氟碳涂层的 Clark-Y 型水翼,采用高速摄像装置观察了不同空化阶段的空化流动形态。研究结果表明:(1)在初生空化阶段,当σ=1.82时,沿环氧涂层水翼表面展向排列着初生空泡,而氟碳涂层水翼还处于无空化状态,说明相对于环氧涂层,氟碳涂层对空化现象的产生有一定的抑制作用,氟碳涂层水翼初生空化数为1.50;(2)在片状附着型阶段,当σ小于1.63时,绕环氧涂层水翼的空化先于氟碳涂层水翼发展至片状空化,绕水翼空化流动产生大量分散空泡,沿水翼表面向后运动过程中逐渐长大,在高压区溃灭后形成小空泡并以马蹄涡形式继续运动。同一空化数下,绕环氧涂层水翼空化流动的空泡长度大于氟碳涂层水翼。但随空化数降低,两者空泡长度逐渐接近,说明环氧涂层在片状空化阶段对空化的抑制作用逐渐增强;(3)σ=0.87时空化发展至云状空化阶段,空化流动伴随周期性的云状空泡的脱落,绕环氧涂层水翼的空化流动周期及无量纲空化面积均小于氟碳涂层水翼,说明涂层对空化的非定常变化也有一定的抑制作用,且环氧涂层强于氟碳涂层。  相似文献   

19.
周景军  于开平  张广 《船舶力学》2011,15(3):199-206
采用两流体模型以及DES湍流模型对通气超空泡发展过程以及泡内压力变化规律进行了三维数值仿真。模拟了两种泄气方式:回注射流和双涡管泄气方式。并基于文中数值方法预测通气超空泡方面的能力,对两种研究航行体滑行状态的方法进行了评估:一种方法是在水槽中的定轴俯仰运动,另一种方法是类似于约束模实验的自由俯仰运动,两种方法都采用了网格变形技术。结果表明在相同条件下,后者可以很容易得到超空泡航行体的滑行状态而前者较难获取滑行状态,尽管在水槽中前者更易实现。文中的数值方法可以用来进一步研究滑行状态并给出一些有意义的结论。  相似文献   

20.
陈瑛  鲁传敬  郭建红 《船舶力学》2010,14(12):1319-1330
基于相分数输运方程型的均质平衡流空化模型,采用有限体积法研制了大型空泡流计算程序,对大攻角下运行的水下航行体三维空泡流进行了数值模拟,并与实验结果进行了对比.首次将非线性涡粘湍流模式与基于Rayleigh-Pies-set方程的TEM型空化模型相结合,建立了自然空泡流的数学模型.采用基于SIMPLE的压力-速度-密度耦合修正算法、二阶精度三时间层格式以及基于延迟修正的高阶对流TVD格式.计算模拟了0.2~0.6空化数、4°~20°攻角的不同工况,得到的三维空泡形状及压力分布与实验结果相符.研究了大攻角下航行体周向上的空泡形态分布特征,给出了多种空泡尺度和升阻系数与空化数和攻角之间的关系.通过定量分析发现,空泡的不对称性导致航行体某些部位受力集中,表明高速带空泡运动的航行体在大攻角运动中其结构将受到巨大的水动力载荷.计算还发现,大攻角下的阻力系数与空化数之间的关系和零攻角条件下刚好相反,并根据空泡的不对称性从形状阻力与粘性阻力的关系上对这种现象作出了解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号